MATLAB® Production Server™
RESTful API and JSON

7

MATLAB

R2023a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Production Server™ RESTful API and JSON
© COPYRIGHT 2016-2023 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

March 2016 Online only New for Version 2.3 (Release R2016a)
September 2016 Online only Revised for Version 2.4 (Release R2016b)
March 2017 Online only Revised for Version 3.0 (Release 2017a)
September 2017 Online only Revised for Version 3.0.1 (Release R2017b)
March 2018 Online only Revised for Version 3.1 (Release R2018a)
September 2018 Online only Revised for Version 4.0 (Release R2018b)
March 2019 Online only Revised for Version 4.1 (Release R2019a)
September 2019 Online only Revised for Version 4.2 (Release R2019b)
March 2020 Online only Revised for Version 4.3 (Release R2020a)
September 2020 Online only Revised for Version 4.4 (Release R2020b)
March 2021 Online only Revised for Version 4.5 (Release R2021a)
September 2021 Online only Revised for Version 4.6 (Release R2021b)
March 2022 Online only Revised for Version 5.0 (Release R2022a)
September 2022 Online only Revised for Version 5.1 (Release R2022b)

March 2023 Online only Revised for Version 5.2 (Release R2023a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

Client Programming

1]

RESTful API for MATLAB Function Execution 1-2
Characteristics of RESTful API i 1-2
Synchronous Execution 1-3
Example: Synchronous Execution of Magic Square Using RESTful API and

JSON 1-3
Asynchronous Execution 1-5
Example: Asynchronous Execution of Magic Square Using RESTful API and

JSON 1-7
Manage HTTP CooKieot e e 1-8

RESTful API for Discovery and Diagnostics 1-10
Characteristics of RESTful API i 1-10
DiSCOVEIY SEIVICE . . v vttt e e e e 1-10
Health Check 1-14
MetriCs SErvICE v e 1-15

MATLAB Function Signaturesin JSON 1-18
Function Objects i e 1-19
Signature Objects 1-20
Argument Objects 1-20
Typedef Object 1-21

JSON Representation of MATLAB Data Types

2|

JSON Representation of MATLABDataTypes 2-2
Numeric Types: double, single and Integers 2-3
Numeric Types: NaN, Inf,and-Inf 2-5
Numeric Types: Complex Numbers 2-6
CharaCter ATTayo vt e e e 2-7
Logical 2-8
Cell ATTaY . . oottt e 2-9
Structure Arrayt 2-10
SIHNG ATTAY . . .ot e 2-12
Enumeration 2-13
Datetime Arrayot 2-14
Empty Array: []o 2-18

iii

iv

Contents

Troubleshooting RESTful API Errors

3|

Troubleshooting RESTful API Errors
Structure of HTTP ETTOr o oo e
HTTP Status Codes e
Structure of MATLAB ErTor oo oo e e
Access-Control-Allow-Origint

Examples: RESTful API and JSON

4

Create Web-Based Tool Using RESTful API, JSON, and JavaScript 4-2
Step 1: Write MATLAB Code i 4-2

Step 2: Create a Deployable Archive with the Production Server Compiler
ADD o e 4-2
Step 3: Place the Deployable Archive ona Server 4-2
Step 4: Enable Cross-Origin Resource Sharing (CORS) on the Server 4-3
Step 5: Write JavaScript Code using the RESTful APl and JSON 4-3
Step 6: Embed JavaScript within HTML Code 4-4
Step7: Run Example e 4-5
Create Custom Prometheus Metrics 4-8
Write MATLAB Code to Create Custom Metrics 4-8
Deploy MATLAB Functionto Server v ... 4-8
Enable Metrics on Serverc.. ittt 4-8
Execute Deployed Function, 4-8
Query Metrics Service to Retrieve Custom Metrics 4-9
RESTful APIs

S|

Client Programming

1 client Programming

RESTful API for MATLAB Function Execution

The MATLAB Production Server RESTful API for MATLAB function execution enables you to evaluate
MATLAB functions on remote servers using JSON representation of MATLAB data types and protocol
buffers. Protocol buffer support is available only in the Java® and .NET client APIs.

You can write client code that uses the MATLAB Production Server RESTful API in web-based
languages such as JavaScript® and embed it in HTML pages. You can then use these web pages to
send requests and retrieve responses from a MATLAB Production Server instance. While web-based
applications may be more amenable to client code written in JavaScript, you can use any HTTP
supported programming language such Java, Python, C++, .NET, and many others to develop client
applications.

If client programs make requests from different domains, programmers using JavaScript must verify
whether Cross-Origin Resource Sharing (CORS) is enabled on the server. To enable CORS on the
server, the server administrator must set the appropriate value for the cors-allowed-origins property
in the main_config server configuration file.

Characteristics of RESTful API

The RESTful API for MATLAB function execution uses the HTTP request-response model for
communication with MATLAB Production Server. This model includes request methods, response
codes, message headers, and message bodies. The RESTful API has the following characteristics:

* The HTTP methods—POST, GET, and DELETE—form the primary mode of communication between
client and server.

* Unique Uniform Resource Identifiers (URIs) identify the resources that the server creates.

* Message headers convey metadata such as the Content-Type of a request.

* The API supports application/json as the HTTP Content-Type header.

* The RESTful API for MATLAB function execution also supports application/x-google-
protobuf as the HTTP Content-Type through the Java and .NET client APIs only.

* The message body of the request contains information to be sent to the server.
* Ifyou use JSON as the data serialization format, inputs to the MATLAB function contained
within a deployed archive are represented in JSON and encapsulated within the body of a

message. For more information, see “JSON Representation of MATLAB Data Types” on page 2-
2.

* If'you use protocol buffers (protobuf) for data serialization, the Java and .NET client libraries
provide helper classes to internally create protobuf messages based on a proto format and
returns the corresponding byte array. Use this byte array in the message body of the request.

» The message body of the response contains information about a request such as state or results.
If you use protobuf for data serialization, the Java and .NET client libraries provide methods and
classes to deserialize the protobuf responses.

* The API supports both the synchronous and asynchronous modes of the server.

Note The examples and graphics that follow use JSON as the data serialization format.

1-2

RESTful APl for MATLAB Function Execution

Synchronous Execution

In synchronous mode, after a client posts a request, the worker process of the server blocks all
further requests until it has completed processing the original request. After processing is complete,
the worker automatically returns a response to the client. Since it is the worker that blocks during
request processing, if there are other workers available, the server can accept other synchronous
requests for processing. To make a synchronous request to the server and wait for a response, use
POST Synchronous Request.

The following graphic illustrates how the RESTful API works in synchronous mode.

Synchronous
Client Server
Lo) e
I E— Posting a synchronous request to the server
Request Message
HEADER | POST /mymagic/mymagic HTTP/1.1
Content-Type: application/json
goDy | {"rhs":[3],"nargout”:1,
O "putputFormat":{"mode": "small”, "nanType":"string"}} Other requests
to worker
Response Message are blocked
HEADER | HTTP/1.1 200 Ok
4— EBoDY| {"lhs":[[[8,1,6],13,5,7],14,9,2]11}

UMBLOCKED

Example: Synchronous Execution of Magic Square Using RESTful API
and JSON

This example shows how to use the RESTful API and JSON by providing two separate
implementations—one using JavaScript on page 1-4 and the other using Python on page 1-4.

When you execute this example, the server returns a list of 25 comma-separated values. These values
are the output of the deployed MATLAB function mymagic, represented in column-major format. The
MATLAB code for the mymagic function follows.

function out = mymagic(in)
out = magic(in);
end

For this example to run, a MATLAB Production Server instance containing the deployed MATLAB
function mymagic needs to be running. For more information on how to create a deployable archive,

1-3

1 client Programming

see “Create Deployable Archive for MATLAB Production Server”. For more information on setting up
a server, see “Create Server Instance Using Command Line”.

JavaScript Implementation

With the JavaScript implementation of the RESTful API, you include the script within the <script>
</script> tags of an HTML page. When you open this HTML page in a web browser, the server
returns the values of the mymagic function. Note that the server needs to have CORS enabled for
JavaScript code to work. For more information on how to enable CORS, see cors-allowed-origins.

A sample HTML code with embedded JavaScript follows.

<!DOCTYPE html>

<html>
<head>

<title>Magic Square</title>

<script>
var request = new XMLHttpRequest();
//MPS RESTful API: Specify URL
var url = "http://localhost:9910/ctfArchiveName/mymagic";
//MPS RESTful API: Specify HTTP POST method
request.open("POST",url);
//MPS RESTful API: Specify Content-Type to application/json
request.setRequestHeader("Content-Type", "application/json");
var params = { "nargout": 1,

"rhs": [5] };
request.send(JSON.stringify(params));
request.onreadystatechange = function() {

if(request.readyState == 4)
{ //MPS RESTful API: Check for HTTP Status Code 200
if(request.status == 200)
{ result = JSON.parse(request.responseText);
if(result.hasOwnProperty("lhs")) {
//MPS RESTful API: Index into "lhs" to retrieve response from server
document.getElementById("demo").innerHTML = '<p>' + result.lhs[0].mwdata; }
}
else if(result.hasOwnProperty("error")) {
alert("Error: " + result.error.message); }
}
+
</script>
</head>
<body>
<p>MPS RESTful API and JSON EXAMPLE</p>
<p> >> mymagic(5)</p>
<p id="demo"></p>
<p> # output from server returned in column-major format </p>
</body>
</html>

Python Implementation

import json
import http.client

conn = http.client.HTTPConnection("localhost:9910")
headers = { "Content-Type": "application/json"}
body = json.dumps({"nargout": 1, "rhs" : [5]})

conn.request("POST", "/mymagic/mymagic", body, headers)
response = conn.getresponse()
if response.status == 200:

result = json.loads(response.read())
if "lhs" in result:
print("Result of magic(5) is " + str(result["lhs"][0]["mwdata"]))

1-4

RESTful APl for MATLAB Function Execution

elif "error" in result:

print("Error: " + str(result["error"]["message"]))

For an end-to-end workflow example of deploying a MATLAB function to MATLAB Production Server
and invoking it using RESTful API and JSON, see “Create Web-Based Tool Using RESTful API, JSON,

and JavaScript” on page 4-2.

Asynchronous Execution

In asynchronous mode, a client is able to post multiple requests, and in each case the server responds
by creating a new resource and returning a unique URI corresponding to each request. The URI is
encapsulated within the body of the response message. The client can use the URI that the server
returns for querying and retrieving results among other uses.

The RESTful API calls for asynchronous mode are listed in the following table:

Call

Purpose

POST Asynchronous Request

Make an asynchronous request to the server

GET Representation of Asynchronous Request

View how an asynchronous request made to the
server is represented

GET Collection of Requests

View a collection of requests

GET State Information

Get state information of a request

GET Result of Request

Retrieve the results of a request

POST Cancel Request

Cancel a request

DELETE Request

Delete a request

The following graphic illustrates how the RESTful API works in asynchronous mode. The graphic does
not cover all the RESTful API calls. For a complete list of calls, see the preceding table.

1-5

1 Client Programming

Asynchronous

Posting an asynchronous request 1o the server

Request Message

HEADER | POST /mymagicmmymagic imade=agyne HT TR 1.1
Content-Type: application/son
0O BoOY | [rhs™{3] nargout™1,
*outputFormat™{"mode” small T nanType " string T}

Response Message
HEADER | HTTP/.1 201 Created
pooY | [
‘i "ad 236-26c1°
Psalf: "eda954fd-Sealirequests/ad 236-26¢1°

— "up”: “f-eda954fd-Sealirequests’,
lastModifiedSeq: 41,
"state”; "READING",
elient®; =
!
Geitting the state/finformation of request
Request biessage

O——— HEADER | GET /~edat54id-Seatirequests/sd236-26¢1 finfo HTTR/.1

Response Message
HEADER | HTTR.1 20000K
BOOY |
— “request”: "/ —eda9546d-5eal requestsfad? 36-26c17
“lastModifiedSeq”: 43,

“state”; "IN_QUEUE",
}

Gelting the result

Reques] Message

1-6 (O——— resner | GET /~eda954fd-Sealirequests/ad236-26¢1 fresult HTTPA.1

oLl £

RESTful APl for MATLAB Function Execution

Example: Asynchronous Execution of Magic Square Using RESTful API
and JSON

This example shows how to use the RESTful API and JSON for asynchronous execution using
JavaScript. When you execute this example, the server returns a list of 100 comma-separated values.
These values are the output of the deployed MATLAB function mymagic, represented in column-major
format. The MATLAB code for the mymagic function follows.

function out = mymagic(in)
out = magic(in);
end

For this example to run, a MATLAB Production Server instance containing the deployed MATLAB
function mymagic needs to be running. For more information on how to create a deployable archive,
see “Create Deployable Archive for MATLAB Production Server”. For more information on setting up
a server, see “Create Server Instance Using Command Line”.

A sample HTML code with embedded JavaScript follows.

<!DOCTYPE html>
<html>
<head>
<title>Magic Square</title>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.0/jquery.min.js"></script>
<script>
// MPS RESTful API (Asynchronous): Specify URL
var hostname = "http://localhost:9910";
var mode = "async";
var clientID = "client100";
var ctfName = "mymagic";
var matlabFuncName = "mymagic"
var url = hostname + "/" + ctfName + "/" + matlabFuncName + "?mode=" + mode + "&client=" + clientID;
// Specify arguments
var params = {
"nargout": 1,
"rhs": [100],
"outputFormat": {"mode": "small"}
+
$.ajax(url, {
data: JSON.stringify(params),
//MPS RESTful API (Asynchronous): Specify Content-Type to application/json and Specify HTTP POST method
contentType: 'application/json',
method: 'POST',
dataType: 'json',
success: function(response) {
// Print Request URI to webpage
$("#requestURI").html('Request URI: ' + hostname + response.self);
pollUsingUp(response);

}
1)
// Polling Server using UP
function pollUsingUp(request) {
setTimeout (function() {
var newSeq = parselnt(request.lastModifiedSeq) + 1;
var queryURI = hostname + request.up + "?since=" + newSeq + "&ids=" + request.id;

$.ajax({
url: queryURI,
method: 'GET',

dataType: 'json',
success: function(response) {
//Poll again if no data about the request was received.
if (response.data.length == 0) {
pollUsingUp(request);
return;

1-7

1 Client Programming

1-8

var requestResource = response.data[0];
// Print "state" of request
$("#state").html('State: ' + requestResource.state);

if (requestResource.state != "READY" && requestResource.state != "ERROR") {
//Keep polling if the request is not done yet.
pollUsingUp(requestResource);
} else {
var requestURI = hostname + requestResource.self;
var responseURI = hostname + requestResource.self + "/result";
// Get result.
$.ajax({
url: responseURI,
// MPS RESTful API (Asynchronous): Specify HTTP GET method
method: 'GET',
dataType: 'json',
success: function(response) {
if (response.hasOwnProperty("lhs")) {
$("#demo") .html('<p>' +
response.lhs[0] + '</p>');
//Uncomment the next line if using JSON large representation
//response.lhs[0].mwdata + '</p>');

} else if (response.hasOwnProperty("error")) {
alert("Error: " + response.error.message);

}
// MPS RESTful API (Asynchronous): Specify HTTP DELETE method
$.ajax({

url: requestURI,

method: 'DELETE'

1)
}
1)
}
}
1)
}, 200);
}
</script>

</head>
<body>

<p>MPS RESTful API and JSON EXAMPLE</p>
<p> >> mymagic(5)</p>
<p id="requestURI"></p>
<p id="state"></p>
<p id="demo"></p>
<p> # output from server returned in column-major format </p>
</body>
</html>

Manage HTTP Cookie

A MATLAB Production Server deployment on Azure® provides an HTTPS endpoint URL to invoke
MATLAB functions deployed to the server. The Azure application gateway provides cookie-based
session affinity, where it uses cookies to keep a user session on the same server. On receiving a
request from a client program, the application gateway sets the Set-Cookie HTTP response header
with information about the server virtual machine (VM) that processes the request.

Asynchronous Request Execution

A client program that uses asynchronous requests to execute a MATLAB function deployed to the
server must set the Cookie HTTP request header with the value of the Set-Cookie header for all
subsequent requests. This ensures that same server VM that processes the first request processes all
subsequent requests for that session.

RESTful APl for MATLAB Function Execution

Synchronous Request Execution

A client program that uses synchronous requests to execute a MATLAB function deployed to the
server must not set the Cookie HTTP request header with the value of the Set-Cookie header, and
must clear the value of the Cookie header if it has been previously set. This ensures that the
synchronous requests are load balanced and the same server VM does not process them.

For more information about the architecture and resources for MATLAB Production Server on Azure,
see “Architecture and Resources on Azure” and “Architecture and Resources on Azure”.

See Also

More About

. “RESTful API for Discovery and Diagnostics” on page 1-10

. “MATLAB Function Signatures in JSON” on page 1-18

. “JSON Representation of MATLAB Data Types” on page 2-2
. “Create Deployable Archive for MATLAB Production Server”

1-9

1 client Programming

RESTful API for Discovery and Diagnostics

1-10

The MATLAB Production Server RESTful API for discovery and diagnostics consists of the following
APIs:

* A discovery service that provides information about MATLAB functions deployed on a server
* A health check API that lets you know if the server is available to process requests

* A server metrics service that returns information about client requests, the time and memory that
the server takes to execute these requests, and optional custom metrics

The health check and the discovery service return responses in JSON format. The metrics service
returns data in Prometheus metrics format.

Characteristics of RESTful API

The MATLAB Production Server RESTful API for discovery and diagnostics uses the HTTP request-
response model for communication with MATLAB Production Server. This model includes request
methods, response codes, message headers, and message bodies. The RESTful API for discovery and
diagnostics has the following characteristics:

* The HTTP GET method forms the primary mode of communication between client and server.
* Unique uniform resource identifiers (URIs) identify the resources that the server creates.

* Since requests to the server use the GET method, the requests do not have a message body and
you do not have to set the Content-Type header in the request.

* The message body of the response contains information specific to a request such as information
about functions deployed to the server, server health status, or server metrics.

Discovery Service

Use the discovery service to learn about MATLAB functions that you deploy to the server. The
discovery service returns information about the deployed MATLAB functions as a JSON object. The
object is a multilevel nested structure and at a high level displays the discovery schema version and a
list of deployed archives. Each archive contains information about the deployed MATLAB functions
and their function signatures.

To use the discovery service, you must enable the discovery service on the server by setting the - -
enable-discovery property in the main config server configuration file.

To get useful information when using the discovery service, you must include a JSON file containing
function signatures of the MATLAB functions that you want to deploy when creating the deployable
archive. For information on how to create a deployable archive, see “Create Deployable Archive for
MATLAB Production Server”. For information about creating the JSON file containing function
signatures, see “MATLAB Function Signatures in JSON” on page 1-18.

Call the discovery service using GET Discovery Information.

The response from the server is a JSON object.

RESTful API for Discovery and Diagnostics

"discoverySchemaVersion": "1.8.8"

5"

/'”a’chiu

"<Name of the CTF archive>":

{ "archiveSchemaVersion": “1.1.8",
"archiveluid": "<ID of the CTF archive>",
"name": “"<Name of the CTF archive:>",
"matlabRuntimeVersion™: “<MATLAB Runtime version number:",

\
archives object

.
f "typedefs”:
i

"¢struct_name>": {
"help": “"«field description>",

"<homogeneous_cell name>":

"help”: "<field_description:",

"mwtype”: “struct",
“fields": [
{"name”: "«<field_name>", “mwtype": [“<field_matlab_type>"], "mwsize"”
1
¥

typedefs object

AN

["<sizel», ..., <sizeN>"], "help": "<field_descriptions"}

"mwtype”: “cell”,
"elements": {"name": "<field name>", "mwtype": ["<field_matlab_type>"], "mwsize": ["<sizel>, ..., <sizeN>"], "help": "<field_description>"}
}
"<heterogeneous_cell_name>":
{
"help”: "<field description>",
"mwtype”: “cell”,
"elements": [
{"name": "<field name>", "mwtype": [“"<field matlab_type>"], "mwsize": ["<sizel», ..., <sizeN"], "help": "«<field_description:"}
{"name": “<field_name>", "mwtype": [“<field_matlab_type>"], "mwsize": ["<sizel», ..., <sizeN>"], "help": "<field_description>"}
1
}
\ b j
"functions™: . .
1 functions object

"MATLAB_function_namel”: {
"signatures”: [
{ "help”: "«functionNamel descriptions”,
"inputs": [

{ "name": "<inputl name>" , "mwtype": ["<field_matlab type>"], "help":

"<field_description>"},

{ "name": “<input2_namex" , "mwtype": ["<matlab_type:", "size=<array_dimensicns>"], "help”: "<field_description>"}

1

"outputs": [
{ "name": "<outputl name>" , "mwtype": "<matlab_type:>", "help": "<field_description>" }
{ "name": “<output2 name>" , "mwtype”: [“<matlab_type:", "size=<array_dimensions:>"], "help”: "<field_description>"}

1

}
}
}
}

JSON Response Object

The JSON response object contains a version number for the discovery schema and a list of deployed
archives. The response object contains the following fields:

Key

Value

discoverySchemaVersion

JSON string containing the version number for the
discovery schema in the format
<major#>.<minor#>.<patch#>, where each number is a
nonnegative integer

Example value: 1.0.0

archives

JSON object containing a list of all deployed archives

1-11

1 Client Programming

archives JSON Object

The archives object contains a list of all deployed archives. Each object in this list is a JSON object
whose key is the name of the deployed archive, for example, <Name of the CTF archive>, and
whose value is a JSON object that has the following fields:

Key Value

archiveSchemaVersion JSON string representing the version number of
the archive schema

Example: 1.1.0

archiveUuid JSON string representing a unique identifier for
the archive

matlabRuntimeVersion JSON string representing the MATLAB Runtime
version

Example: 9.9.0

functions JSON object containing a list of functions in the
deployed archive
typedefs JSON object containing a list of cell arrays or

structures used as input or output arguments to
deployed functions

functions JSON Object

The functions object contains a list of nested JSON objects, where each nested object corresponds
to a MATLAB function in the deployed archive.

Each function object has the name of the deployed function as its key, for example,

<MATLAB function_namel>, and a JSON object as its value. The JSON object contains a
signatures key whose value is an array of JSON objects that contain information about the
MATLAB function signatures.

Each object in the signatures array contains the following fields:

Key Value
help Name of input parameter
Example: "name": "inputl"
inputs Array of JSON objects containing information

about input arguments

outputs Array of JSON objects containing information
about output arguments

Each object in the inputs array contains the following fields:

Key Value
name Name of input parameter
Example: "name": "inputl"

1-12

RESTful API for Discovery and Diagnostics

Key Value
mwtype MATLAB data type

Example: "mwtype": "double"
mwsize Size of data

Example: "mwsize": ["2,3"]
help Description for input arguments

Example: "help": "inputl description"

Each object in the outputs object contains the following fields:

Key Value
name Name of output parameter
Example: "name": "outputl"
mwtype MATLAB data type
Example: "mwtype": "double"
mwsize Size of data
Example: "mwsize": ["2,3"]
help Description for output parameters

Example: "help": "outputl description"

typedefs JSON Object

The response contains the typedefs object only if deployed functions contain cell arrays or

structures as input or output arguments.

If deployed functions contain cell arrays as input or output arguments, the typedefs object contains
nested objects whose key is the name of the cell array, for example, <homogeneous cell name>,
and the corresponding value contains an object with information about the cell array.

Each object in the <cell array name> object contains the following fields:

Key Value

help JSON string containing the description for the
cell array
Example: "help": "cell help"

type cell

elements JSON array of objects describing each element of

the cell array

Each object in elements contains the following fields:

1-13

1 client Programming

1-14

Key Value
name Name of cell element
Example: "name": "a"
type Data type of element
Example: "type": "double"
size Size of array
Example: "size": ["2,3"]
help Description of cell element
Example: "help": "Operand a"

If deployed functions contain structure arrays as input or output arguments, the typedefs object
contains nested objects whose key is the name of the structure, for example, <struct name>, and

the corresponding value contains an object with information about the structure.

Each object in the <struct name> object contains the following fields:

Key Value

help JSON string containing the description for the
structure
Example: "help": "struct help"

type struct

fields JSON array of objects describing each element of

the structure

Each object in fields contains the following fields:

Name Description
name Name of struct field
Example: "name": "my field name"
type Data type of field value
Example: "type": "char"
size Size of struct
Example: "size": ["2,3"]
help Description for struct element

Example: "help":
my field name"

"description for

Health Check

Use the health check API to determine if the server has a valid license and is able to process HTTP
requests. The health check classifies the server as healthy or unhealthy depending on whether the

RESTful API for Discovery and Diagnostics

server has a valid license and can communicate with the Network License Manager. To check the
server health, use GET Server Health.

A server is healthy when it is in one of the following states:

* The server is operating with a valid license. The server is communicating with the network license
manager, and the required number of license keys are checked out.

» The server has lost communication with the network license manager, but the server is still fully
operational and will remain operational until the end of the grace period as specified by the
license-grace-period property.

If the health check is successful, the server responds with a 200 OK HTTP status code and a JSON
object indicating that the server is healthy.

{

"status": "ok"

}

When the server is unavailable to process HTTP requests, the health check API returns a 503
Health Check Failed HTTP response code with an empty response body. The health check fails
when the server has lost communication with the Network License Manager for a period of time
exceeding the grace period. When the server is in this state, it actively attempts to reestablish
communication with the license manager. Request processing resumes if the sever is able to
reestablish communication with the license manager.

A failed health check does not provide additional information about the cause of failure in the
response body. Server administrators can use mps-status to get detailed information about the
server status. Your terminal must be on the same system as the server to run mps-status.

For more information on licensing, see “Manage Licenses for MATLAB Production Server”.

Metrics Service

Use the metrics service to retrieve server metrics in Prometheus® metrics format. The metrics
service returns information about requests that client applications send to the server, and the time
and memory that the server takes to execute the requests. You can use the metrics to monitor the
server when working with Kubernetes® and microservices. To call the metrics services, use GET
Metrics.

To use the metrics service, you must enable the metrics service on the server by setting the - -
enable-metrics property in the main_config server configuration file.

A successful response from the server consists of several server metrics in the Prometheus counter
and gauge metric types. For more information about Prometheus metrics format, see Prometheus
Metric Types.

TYPE matlabprodserver up time seconds counter
matlabprodserver up time seconds 68140.5

TYPE matlabprodserver queue time seconds gauge
matlabprodserver queue time seconds 0

TYPE matlabprodserver cpu time seconds counter
matlabprodserver cpu_time seconds 18.2188

TYPE matlabprodserver memory working set bytes gauge
matlabprodserver _memory working set bytes 1.57426e+08
TYPE matlabprodserver requests accepted total counter

1-15

https://prometheus.io/docs/concepts/metric_types/
https://prometheus.io/docs/concepts/metric_types/

1 client Programming

1-16

matlabprodserver requests accepted total 0

TYPE matlabprodserver requests in queue gauge
matlabprodserver requests in queue 0

TYPE matlabprodserver requests processing gauge
matlabprodserver requests processing 0

TYPE matlabprodserver requests succeeded total counter
matlabprodserver requests succeeded total 0

TYPE matlabprodserver requests failed total counter
matlabprodserver requests failed total 0

TYPE matlabprodserver requests canceled total counter
matlabprodserver requests canceled total 0

An error response of 403 Metrics Disabled indicates that the metrics service is not enabled on
the server.

Custom Metrics

You can instrument deployed MATLAB code by adding custom metrics specific to your application or
request processing. In the deployed MATLAB code, you can create custom Prometheus metrics by
using the functions prodserver.metrics.incrementCounter and
prodserver.metrics.setGauge. The functions create metrics of Prometheus counter and gauge
metric types, respectively.

The server collects the custom metrics when a client calls the deployed MATLAB function. In addition
to the default server metrics, the output of the metrics service includes the custom metrics and the
name of the deployable archive that created the metrics.

For example, including the following functions in the MATLAB function that you deploy to the server
creates custom metrics called test function execution count and test timer seconds.

prodserver.metrics.incrementCounter("test function execution count",1);
prodserver.metrics.setGauge("test timer seconds",0.421147);

When you query the metrics API after a client calls the deployed function, you see the following
output:

TYPE matlabprodserver up time seconds counter
matlabprodserver up time seconds 16705.3

TYPE matlabprodserver queue time seconds gauge
matlabprodserver queue time seconds 0

TYPE matlabprodserver cpu time seconds counter
matlabprodserver cpu_time seconds 29.1406

TYPE matlabprodserver memory working set bytes gauge
matlabprodserver _memory working set bytes 5.17153e+08
TYPE matlabprodserver requests accepted total counter
matlabprodserver requests accepted total 7

TYPE matlabprodserver requests in queue gauge
matlabprodserver requests _in queue 0

TYPE matlabprodserver requests processing gauge
matlabprodserver requests processing 0

TYPE matlabprodserver requests succeeded total counter
matlabprodserver requests succeeded total 7

TYPE matlabprodserver requests failed total counter
matlabprodserver requests failed total 0

TYPE matlabprodserver requests canceled total counter
matlabprodserver requests canceled total 0

TYPE test function execution count counter

RESTful API for Discovery and Diagnostics

test function_execution count{archive="test metrics 2"} 1
TYPE test timer seconds gauge
test timer seconds{archive="test metrics"} 0.421147

The output contains the test function execution count and test timer seconds custom
metrics, and the name of the deployable archive, test metrics, that generates the metrics.

For a detailed example, see “Create Custom Prometheus Metrics” on page 4-8.

See Also

mps-status | license-grace-period | prodserver.metrics.setGauge |
prodserver.metrics.incrementCounter

Related Examples

. “RESTful API for MATLAB Function Execution” on page 1-2
. “Verify Server Status”
. “Create Custom Prometheus Metrics” on page 4-8

1-17

1 client Programming

MATLAB Function Signatures in JSON

1-18

For a RESTful client to acquire the function signatures of MATLAB functions deployed to MATLAB
Production Server using the discovery API, you must embed information about your MATLAB
functions in a JSON file while packaging your deployable archive.

After adding the MATLAB functions to deploy to the Production Server Compiler app, in the
Include MATLAB function signature file section, select the Create File button. This action
creates a template of the JSON file with the name <projectName>functionSignatures.json.

The <projectName>functionSignatures. json file is a single JSON object. It contains a schema
version and a list of function objects. Each function object contains a list of signature objects, and
each signature object contains a list of argument objects.

If your MATLAB functions have struct or cell data types as inputs or outputs, you can add their
descriptions to the JSON file using typedef objects.

The JSON file does not support adding descriptions for datetime and enumeration values,
although your MATLAB functions can have these data types as input or outputs.

You can access the JSON object file from the server by using the “Discovery Service” on page 1-10.

Warning The validateFunctionSignaturesJSON function does not support validating MATLAB
Production Server <projectName>functionSignatures.json.

MATLAB Function Signatures in JSON

=// Functicn Signatures
// To opticnally specify argument types and/or sizes, search for "type”
// and insert the appropriate specifiers inside the brackets. For example:
i
1 "type": [“double", "size=1,1"]
i
// To medify function or parameter help text, search for "purpose” and edit
// the values.
i
// J50N-formatted text below this line.

=1

"_schemaVersion": “<major#>.<minor#:.<patch#:",

Typedef Object —

= f"_t','pedefs": 1

= "<struct_names”: {

"purpose” : "<struct_name_description>”,
"type": “"struct”,
-] "fields": [

{ "name”: “<field_name>", "type": ["«field_matlab_type>"], "
{ "name": "<field_name>", "type": ["<field_matlab_type>"], "

"i1"<field_description” },
":"¢field_description>" }

1
I

-] "cell name": {

“purpose” @ "<cell name_description>”,
"type": “"cell”,
“elements” : { "type” : “element_matlab_type™}
2 J

s

"functionNamel":

3| { Signature Object
inputs
= Argument Object
{"name”: “<inputl name>", “type": “<matlab_type>", "purpose”: "<inputl_name_description:"},
{"name <input?_name>", "type": ["<matlab_type>", “size=<array_dimensions>"], “purpose"”: “<input2_name_description>"}
1
“outputs”:
= [
{"name”: “<outputl_name:", "type”: “<matlab_type>" , "purpose”: "<outputl_name_description:"},
{"name": “<output?_name>", "type": ["<matlab_type>", "size=<array_dimensions>"], "purpose": "<output2_name_description>"}
15
"purpose”: "<functionNamel_description>”
i
= “functionName2": {
- “inputs”: [
{"nam <inputl name>”, “type”: "<matlab_type>", “purpose”: "<inputl name_description>”},

<input2_name>", "type": ["<matlab_type>", “size=<array_dimensions>"], "purpose”: "<input2_name_description:"}

<outputl_name>", "t
<output2_name>", "type

"<matlab_type>" , "purpose": "<outputl name_description:"},
: ["<matlab_type>”, "size=<array_dimensions>"], "purpose”: "<output2_name_description>"}

"¢<functionName2_description:”

The schema version has a value that is a JSON string in the format <major#>.<minor#>.<patch#>,
where each number must be a nonnegative integer.

Function Objects

Function objects automatically inherit their name from the name of the MATLAB functions that you
add to the project. The purpose line for the function object is inherited from the function description
provided in the MATLAB function. The value of each function object is a signature object.

{
"functionNamel": { signatureObjl},
"functionName2": { signatureObj2}

}

1-19

1 Client Programming

Signature Objects

A signature object defines the list of input and output arguments and supported platforms for the
function. The value of the properties is an array of argument objects.

{

"functionNamel":

{

}
}

"inputs": [argumentObjl, argumentObj2]

Each signature can include the following properties.

Property Description JSON Data Type of Value
inputs List of function input arguments Array of argument objects
outputs List of function output arguments Array of argument objects

Argument Objects

Argument objects define the information for each of the input and output arguments.

{
"functionNamel":
{
"inputs":
[
{"name":"inl", "type":["double"], "purpose":"<input 1 description>"},
{"name":"in2", "type":["logical"], "purpose":"<input 2 description>"}
1
}
}

The order that the inputs appear in the JSON file is significant. For example, in a call to the
functionNamel function, inl must appear before in2.

Each argument object can include the following properties.

name — Name of Argument

The name of the input or output argument, specified as a JSON string. You must specify this property
and its corresponding value. The name property does not need to match the argument name in the
function, but it is a best practice for it to match any help documentation.

Example: "name" : "myArgumentName"

type — Data Type of Argument

The type property defines what MATLAB data type the argument must have.

Value Argument Description

"double" Must be a double precision number
"single" Must be a single precision number
"int8" Must be an 8-bit signed integer

1-20

MATLAB Function Signatures in JSON

Value Argument Description

"uint8" Must be an 8-bit unsigned integer
"intle" Must be a 16-bit signed integer
"uintl6" Must be a 16-bit unsigned integer
"int32" Must be a 32-bit signed integer
"uint32" Must be a 32-bit unsigned integer
"int64" Must be a 64-bit signed integer
"uint64" Must be a 64-bit unsigned integer
"logical" Must be a logical array

"char" Must be a character array
"string" Must be a string array

For cell and struct, see “Typedef Object” on page 1-21.

The JSON file does not support adding descriptions for datetime and enumeration values.
Example: { "name": "in", "type": ["double"] }

size - Array Dimensions

The size property defines the array dimensions of the inputs. It is a comma-separated list of
integers.

Example: { "name": "in", "type": ["double", "size=1,1"] }
purpose — Description for Argument
The purpose property provides a description for the arguments.

Example: { "name": "in", "type": ["double", "size=1,1", "purpose": "Input
argument" }

If you want to use international characters for the purpose argument, enable UTF-8 support for your
server machine.

Typedef Object

A typedef object defines cell arrays and structures. Add a typedef object only if values to the
argument objects are cells or structures. The JSON file template that the Production Server
Compiler app generates does not have this object by default.

In the schema, indicate a typedef object by using the name typedefs with its values as the name of
one or more cell or structure objects. The type is the same as the argument object.

Example of Using a Homogeneous Cell Array: If a MATLAB function sortinput accepts a cell
array as input and returns a cell array as output, and each cell in the input consists of a structure, its
JSON representation is as follows.

{

" schemaVersion": "1.1.0",
" typedefs" : {

1-21

1 Cclient Programming

"struct names scores of students": {

"purpose": "Names and scores of students",
"type": "struct",
"fields": [

{"name": "Name", "type": "char"},

{"name": "Score", "type": ["double","size=1,1"]1}

]

I
"cell student information": {
"purpose": "Cell representing student information",
"type": "cell",
"elements": {
"type": "struct:struct names scores of students"
}
}
1,
"sortinput": {
"inputs": [
{
"name": "unsorted input",
"type": ["cell:cell student information"],
"purpose": "Unsorted list of students and their scores"
}
1,
"outputs": [
{
"name": "sorted output",
"type": ["cell:cell student information"],
"purpose": "Sorted list of students with respect to their scores"
}
1
}

}

Example of Using a Heterogeneous Cell Array: If a MATLAB function organize accepts a cell
array with length 3 containing a character, a square matrix, and a string as input, and returns a
vector of doubles as output, its JSON representation is as follows.

{
" typedefs": {
"cell _het mydata": {
"purpose": "cell containing character, matrix, and string",
"type" : "cell",
"elements" : [
{ "type": ["char", "size=1,1"], "purpose": "cell element 1 is a character" },
{ "type": ["double", "size=N,N"], "purpose": "cell element 2 is a square matrix" },
{ "type": "char", "purpose": "cell element 3 is a string" }
I
I
"organize": {
"inputs": [
{
"name": "data",
"type": ["cell:cell het mydata","size=3,1"],
"purpose": "heterogenous cell array"
}
I,
"outputs": [
{
"name": "numerator",
"type": "double",
"purpose": "result of function"
}
I
}
}

1-22

MATLAB Function Signatures in JSON

See Also

More About

. “Discovery Service” on page 1-10

. “JSON Representation of MATLAB Data Types” on page 2-2
. “Create Deployable Archive for MATLAB Production Server”

1-23

JSON Representation of MATLAB Data
Types

2 JSON Representation of MATLAB Data Types

JSON Representation of MATLAB Data Types

JavaScript Object Notation or JSON is a text-based data interchange format that can be used across
programming languages. Since JSON is independent of programming language, you can represent
MATLAB data types in JSON. Using the JSON representation of MATLAB data types, you can

* Represent data or variables in the client code to serve as inputs to the MATLAB function deployed
on the server.

* Parse the response from a MATLAB Production Server instance for further manipulation in the
client code.

The response from the server contains a JSON array, where each element of the array corresponds
to an output of the deployed MATLAB function represented as a JSON object.

You can represent MATLAB data types in JSON using two notation formats: small and large.

* Small notation provides a simplified representation of MATLAB data types in JSON. There is a one-
to-one mapping between MATLAB data types and their corresponding JSON representation. You
can use small notation to represent scalar and multidimensional double and logical data types,
scalar and 1-by-N char data type and scalar struct.

* Large notation provides a generic representation of MATLAB data types in JSON. The large format
uses the JSON object notation consisting of property name-value pairs to represent data. You can
use large notation for any MATLAB data type that cannot be represented in small notation. The
response from the MATLAB Production Server uses large notation by default.

A JSON object in the large notation contains the following property name-value pairs.

Property Name Property Value

"mwdata" JSON array representing the actual data.
Specify the property value by enclosing the data
as a comma-separated list within [] .

"mwsize" JSON array representing the dimensions of the
data. Specify the property value by enclosing the
dimensions as a comma-separated list within [].

"mwtype" JSON string representing the type of data.
Specify the property value within "".
"double" | "single" | "int8" |
"uint8" | "intl6" | "uintl6" |
"int32" | "uint32" | "int64" |
"uint64" | "logical" | "char" |
"struct" | "cell" | "string" |
"datetime"| "<class name of enumeration>'
"mwcomplex" For complex numbers, set the property value to
JSON true.

MATLAB Compiler SDK™ provides the following utility functions for data conversion between
MATLAB and JSON.

2-2

JSON Representation of MATLAB Data Types

Function Name

Purpose

mps.json.encoderequest

Convert MATLAB data in a server request to
JSON text using MATLAB Production Server
JSON schema.

mps.json.decoderesponse

Convert JSON text from a server response to
MATLAB data.

mps.json.encode

Convert MATLAB data to JSON text using
MATLAB Production Server JSON schema.

mps.json.decode

data.

Convert a character vector or string in MATLAB
Production Server JSON schema to MATLAB

The RESTful API supports the following MATLAB data types.

Numeric Types: double, single and Integers

* The mwdata property must be a JSON array of JSON numbers.
* The mwtype property can be any of double, single, int8, uint8, int1l6, uintl6, int32,

uint32, int64, uint64.

* You cannot represent scalar or multidimensional single and integer types using JSON small

notation.

» Starting in R2020a, int64 and uint64 numbers maintain precision and range in their JSON
representation as they are not converted to double.

Scalar Numeric Types: double, single and Integers

* The mwdata property must be a JSON array containing one JSON number representing the

MATLAB scalar value.

* The mwsize property must be a JSON array containing 1,1.

JSON Representation of Scalar Numeric Types: double, single and Integers

MATLAB Data Type

JSON Small Notation

JSON Large Notation

single, int8, uint8, intl6,

No small representation

{

: "mwdata": N number],
u1nt16, "mwcsiiz:': H??], umber]
"mwtype": "single" | "int8" |
int32, uint32, int64, uint64) "int32" | "uint32" |
double JSON number {
"mwdata": [JSON number],
"mwsize": [1,11,
"mwtype": "double"
}

2-3

"uint8"
"int64"

"int
"uint

2 JSON Representation of MATLAB Data Types

2-4

MATLAB Data: Scalar
Numerics

JSON Small Notation

JSON Large Notation

int8(23) No small representation {
"mwdata": [23],
"mwsize": [1,1],
"mwtype": "int8"
uint8(27) No small representation
"mwdata": [27],
"mwsize": [1,11],
"mwtype": "uint8"
single(20.15) No small representation
"mwdata": [20.15],
"mwsize": [1,1],
"mwtype": "single"
}
intmax('int64"') No small representation {
"mwdata": [9223372036854
"mwsize": [1,11],
"mwtype": "int64"
double(12.905) 12.905
"mwdata": [12.905],
"mwsize": [1,1],
"mwtype": "double"
42 42
"mwdata": [42],
"mwsize": [1,11],
"mwtype": "double"
}

Multidimensional Numeric Types: double, single and Integers

* The mwdata property must be a JSON array containing data from multidimensional arrays in
column-major order. This ordering corresponds to the default memory layout in MATLAB.

* You must represent double arrays, except N-by-1 double arrays, with nested JSON arrays when

using small notation

* You cannot represent multidimensional single and integer types using JSON small notation.

MATLAB Data:
Multidimensional double
Array

JSON Small Notation

JSON Large Notation

[1,2,3;...
4,5,6]

((1,2,31,[4,5,6]1]

"mwdata":[1,4,2,5,3,6],
"mwsize":[2,3],
"mwtype":"double"

JSON Representation of MATLAB Data Types

MATLAB Data:
Multidimensional double
Array

JSON Small Notation

JSON Large Notation

[1, NaN, -Inf;... [[1,{"mwdata": "NaN"},{"mwdaﬁa"gl" Inf"?] ,[2, 105 {"mwdatc"i 1Inff}]
2, 105, Inf] i3 Inf®, “Inf"l,
"mwtype":"double"
}
[12; 45;78] [(r1, 21, 4, 51, [7, 81] {
"mwdata":[1,4,7,2,5,8],
"mwsize":[3,2],
"mwtype":"double"
}
a(:,:,1) = (rra,71,12,811,003,91,[4,10]K, [[5, 11] 16,12]1]
"mwdata" [1 3,5,2,4,6,7,9,11,8,10,12],
"mwsize":[3,2,2],
1 2 "mwtype":"double"
3 4 }
5 6
a(:,:,2) =
7 8
9 10
11 12
[17;500] [17,500] {
"mwdata":[17,500],
"mwsize":[2,1],
"mwtype":"double"
}
[17,500] [[17,500]] {
"mwdata":[17,500],
"mwsize":[1,2],
"mwtype" :"double"
}

Numeric Types: NaN, Inf, and -Inf

* NaN, Inf, and -Inf are numeric types whose underlying MATLAB class can be either double or
single only. You cannot represent NaN, Inf, and -Inf as an integer type in MATLAB.

2-5

2 JSON Representation of MATLAB Data Types

2-6

MATLAB Data: NaN, Inf, and
-Inf

JSON Small Notation

JSON Large Notation

N},

£},

NaN {"mwdata":"NaN"} {
"mwdata": ["NaN"],
"mwsize": [1,1],
"mwtype": "double"
}
or
{
"mwdata": [{"mwdata":"Na
"mwsize": [1,11],
"mwtype": "double"
Inf {"mwdata":"Inf"}
"mwdata": ["Inf"],
"mwsize": [1,1],
"mwtype": "double"
}
or
{
"mwdata": [{"mwdata":"In
"mwsize": [1,11,
"mwtype": "double"
}
-Inf {"mwdata":"-Inf"} {
||mwdatall: [II_IanI]'
"mwsize": [1,11,
"mwtype": "double"
}
or
{
"mwdata": [{"mwdata":"-I
"mwsize": [1,1],
"mwtype": "double"
}

nf'}1,

Numeric Types: Complex Numbers

* The mwdata property values must contain the real and imaginary parts of the complex number

represented side by side.

* You must set an additional property mwcomplex with the value of true.

* The mwtype property can be any of double, single, int8, uint8, int16, uintl16, int32,

uint32, int64, uint64.

* You cannot represent complex numbers using small notation.

JSON Representation of MATLAB Data Types

JSON Representation of Complex Numbers

MATLAB Data

JSON Large Notation

a + bi

MATLAB Data: Scalar Complex Number

int32(3 + 4i)

{
"mwcomplex": true,
"mwdata": [a,b],
"mwsize": [1,11],
"mwtype": "double"

}

JSON Large Notation

{
"mwcomplex": true,
"mwdata": [3,4],
"mwsize": [1,1],
"mwtype": "int32"

}

Complex Numbers

MATLAB Data: Multidimensional Array of

JSON Large Notation

[1 - 2i;...
3 + 7i]

"mwcomplex": true,
"mwdata":[1, -2, 3, 71,
"mwsize":[2,1],
"mwtype":"double",

Character Array

* The mwdata property must be an array of JSON strings.
* The mwtype property must have the value of char.

* You can represent scalar characters and 1-by-N character arrays in small notation.

* You cannot represent multidimensional character arrays in large notation.

JSON Representation of char

MATLAB Data Type

JSON Small Notation (for
scalar and single
dimensional character
arrays)

JSON Large Notation

char

JSON string

{
"mwdata":
"mwsize":
"mwtype": "char"
}

[JSON string],
[<char dimensiohs>],

2-7

2 JSON Representation of MATLAB Data Types

2-8

MATLAB Data: Scalar and
Single-dimensional Character
Array

JSON Small Notation

JSON Large Notation

1 a 1 n a n {
"deata": [Ilall]’
"mwsize": [1,1],
"mwtype": "char"
"hey, jude' "hey, jude"
"mwdata": ["hey, jude"],
"mwsize": [1,9],
"mwtype": "char"
}
MATLAB Data: Multidimensional Character [JSON Large Notation
Array
['boston';... {
'123456"'] "mwdata": ["blo2s3t405n6"],
"mwsize": [2,6],
"mwtype": "char"
}
Logical

* The mwdata property must contain only JSON true or false boolean values. For
multidimensional Logical data, represent the values in column-major order.

* The mwtype property must have the value of logical.

* In the small notation, you must represent multidimensional logical arrays with nested JSON

arrays.

JSON Representation of logical

MATLAB Data Type

JSON Small Notation

JSON Large Notation

logical

true | false

{
"mwtype": "logical",
"mwsize": [1,11],
"mwdata": [true | false]
}

MATLAB Data: Scalar
logical

JSON Small Notation

JSON Large Notation

logical(1l) or true true {
"mwdata": [true],
"mwsize": [1,11],
"mwtype": "logical"
logical(0) or false false
"mwdata": [falsel,
"mwsize": [1,1],
"mwtype": "logical"
}

JSON Representation of MATLAB Data Types

MATLAB Data: JSON Small Notation JSON Large Notation
Multidimensional logical
Array
[true, false;... [[[true,false], [true,false], [true, fellse]]l]
true, false;... "mwdata": [true,true,true,false|, false,false],
true, falsel "mwsize": [3,2],
"mwtype": "logical"

Cell Array

* The mwdata property must be a JSON array that contains the values of the cells in their JSON
representation.

* The mwtype property must have the value of cell.

» You cannot represent cell arrays using small notation.

MATLAB Data Type JSON Large Notation
cell {

"mwdata": [<cell data>],
"mwsize": [<cell dimensions>],
"mwtype": "cell"

}

» Although you must represent cell arrays using large notation only, if the data type of a cell

element supports small notation, you can represent that element in small notation when encoding
the cell array in JSON.

The following table shows an example.

2-9

2 JSON Representation of MATLAB Data Types

MATLAB Data: cell Array

JSON Large Notation with
some cell elements in
Small Notation

JSON Large Notation with
all cell elements in Large
Notation

{'Primes',[10 23 199],{false,trug{'maybe'}}

{
"mwdata": ["Primes", "mwdata": [{
[[10, 23, 199]], "mwdata": ["Primes"],
{ "mwsize": [1, 6],
"mwdata": [false, trye, "maybe'mtype": "char"
"mwsize": [1, 3], A
"mwtype": "cell" "mwdata": [10, 23, 199],
"mwsize": [1, 3],
1, "mwtype": "double"
"mwsize": [1, 3], A
"mwtype": "cell" "mwdata": [{
"mwdata": [falsel],
"mwsize": [1, 1],
"mwtype": "logical"
o
"mwdata": [true],
"mwsize": [1, 11,
"mwtype": "logical"
A
"mwdata": ["maybe"],
"mwsize": [1, 51,
"mwtype": "char"
H,
"mwsize": [1, 31,
"mwtype": "cell"
H,
"mwsize": [1, 31,
"mwtype": "cell"

For more information on MATLAB cell data type, see cell.

Structure Array

2-10

The mwdata property must be a JSON object that contains name-value pairs, where the name
matches a field in the struct and value is a JSON array that represents the data in the field.

The mwtype property must have the value of struct.

Although you must represent multidimensional struct arrays using JSON large notation, if the
data type of a struct value supports small notation, you can represent that value in small
notation when encoding the struct in JSON.

You can represent only a scalar struct in small notation.

JSON Representation of struct arrays

MATLAB Data Type

JSON Small Notation (valid
only for a scalar struct)

JSON Large Notation

struct

JSON object

{
"mwdata": {<struct dat
"mwsize": [<struct dim
"mwtype": "struct"

}

h>}
ensions>],

JSON Representation of MATLAB Data Types

* MATLAB Data: Scalar JSON Small Notation JSON Large Notation
Structure Array
struct('name', 'John Smith', 'age',|¥5)'name" : "John Smith", "age" : |¥5 }
"mwdata": {
"age": [{

"mwdata": [15],
"mwsize": [1, 1],
"mwtype": "doublg"
H

"name": [{
"mwdata": ["Jghn Smith"],
"mwsize": [1, 101,

"mwtype": "char"
H
s
"mwsize": [1, 1],
"mwtype": "struct"

» Although you can represent 1-by-1 struct arrays in small notation, if the data type of a struct
value does not support small notation, you must represent that value in large notation when
encoding the struct in JSON.

MATLAB Data: 1-by-1 JSON Small Notation with |[JSON Large Notation with
Structure Array some struct values in all struct values in Large
Large Notation Notation
struct('Name', {{'Casper', 'Ghost'}X,... {
‘Age',{[14,17,181},... "Age": [[14, 17, 1811, "mwdata": {
'Date’, {736676}) "Date": 736676, "Age": [{
"Name": { "mwdata": [14, 17, 18],
"mwdata": ["Casper", "Ghgst"], "mwsize": [1, 31,
"mwsize": [1, 21, "mwtype": "double"
"mwtype": "cell" .
"Date": [{
} "mwdata": [736676],

"mwsize": [1, 1],
"mwtype": "double"

H,
"Name": [{
"mwdata": [{
"mwdata": ["Caspgr"],
"mwsize": [1, 6],
"mwtype": "char"
oA
"mwdata": ["Ghost"],
"mwsize": [1, 5],
"mwtype": "char"
H,
"mwsize": [1, 2],
"mwtype": "cell"
H
},
"mwsize": [1, 11,
"mwtype": "struct"

* Although you must represent multidimensional struct arrays using JSON large notation, if the
data type of a struct value supports small notation, you can represent that value in small
notation when encoding the struct in JSON.

2-11

2 JSON Representation of MATLAB Data Types

2-12

MATLAB Data:
Multidimensional Structure

JSON Large Notation with
some struct values in

JSON Large Notation with
all struct values in Large

Array Small Notation Notation
struct('Name',{'Casper', 'Ghost"'; {.. {
'Genie' ,'Wolf'},[... "mwdata":{ "mwdata":{
'Ages',{14,17;. .. "Ages":[14,20,17,23], "Ages": [{
20,23}) "Name":["Casper", "Genie" |"Ghost", "Wolf'tnvdata":[141],
}, "mwsize":[1,1],
"mwsize":[2,2], "mwtype":"double"
"mwtype":"struct" A
"mwdata":[20],
"mwsize":[1,1],
"mwtype":"double"
Ao
"mwdata":[17],
"mwsize":[1,1],
"mwtype":"double"
Ao
"mwdata":[23],
"mwsize":[1,1],
"mwtype" :"double"
.
"Name": [{
"mwdata":["Casper"],
"mwsize":[1,6],
"mwtype":"char"
Ao
"mwdata":["Genie"],
"mwsize":[1,5],
"mwtype":"char"
Ao
"mwdata":["Ghost"],
"mwsize":[1,5],
"mwtype":"char"
Ao
"mwdata":["Wolf"],
"mwsize":[1,4],

"mwtype":"char"
H
s
"mwsize":[2,2],
"mwtype":"struct"

String Array

For more information on MATLAB struct data type, see struct.

The mwtype property must have the value of string.
You cannot represent string arrays using small JSON notation.

JSON Representation of string arrays

The mwdata property must be a JSON array containing strings in column-major order.

MATLAB Data Type

JSON Large Notation

string

{

"mwdata":
"mwsize":
"mwtype":

[JSON string],
[<string dimensions>],
"string"

JSON Representation of MATLAB Data Types

MATLAB Data: Scalar, Single-dimensional,
Multidimensional, and missing (MATLAB)

string Arrays

JSON Large Notation

"abc" {
"mwdata": ["abc"],
"mwsize": [1, 1],
"mwtype": "string"
[uabcu]
"mwdata": ["abc"],
"mwsize": [1, 1],
"mwtype": "string"
[Ilabcll Ildell]
"mwdata": ["abc", "de"],
"mwsize": [1, 2],
"mwtype": "string"
["abc" "de"; "fg" "hi"]
"mwdata": ["abc", "fg", "de", "hi"],
"mwsize": [2, 2],
"mwtype": "string"
}
string(missing) {
"mwdata": [{"mwdata": "missing"}],
"mwsize": [1, 1],
"mwtype": "string"
}

For more information on MATLAB string data type, see string.

Enumeration

The mwdata property must be a JSON array of strings denoting the enumeration members.

The mwtype property must be set to the class of the enumerations in the array.

You cannot represent an enumeration using small JSON notation.

JSON Representation of enumeration

MATLAB Data Type

JSON Large Notation

enumeration

{
"mwdata": [JSON string],
"mwsize": [<enumeration dimensions>]
"mwtype": "<class name of enumeratio
}

The following table shows examples of JSON representation of an enumeration.

Use the following enumeration for the examples. For more information, see “Define Enumeration

Classes” (MATLAB).

classdef Colors
enumeration

2-13

2 JSON Representation of MATLAB Data Types

2-14

Black Blue Red

end
end

MATLAB Data: Object of Enumeration JSON Large Notation

Class

b = Colors.Black {
"mwdata": ["Black"],
"mwsize": [1, 1],
"mwtype": "Colors"

b = [Colors.Black Colors.Blue]
"mwdata": ["Black", "Blue"],
"mwsize": [1, 21,
"mwtype": "Colors"

}

For more information on MATLAB enumeration data type, see enumeration.

Datetime Array

The mwdata property must be a JSON object containing name-value pairs for TimeStamp and
optionally for LowOrderTimeStamp. Values for TimeStamp and LowOrderTimeStamp are JSON
representation of the double data type.

The TimeStamp property values represent the POSIX time in milliseconds elapsed since
00:00:00 1-Jan-1970 UTC (Coordinated Universal Time).

The LowOrderTimeStamp property values represent additional resolution in the timestamp.
Use this property to maintain precision past milliseconds.

Although you must represent datetime arrays using large notation only, since TimeStamp and
LowOrderTimeStamp represent values of the double data type which supports small
notation, you can represent TimeStamp and LowOrderTimeStamp using small notation when
encoding datetime arrays in JSON.

The mwmetadata property must be a JSON object containing name-value pairs for TimeZone and
Format. Values for TimeZone and Format are JSON representation of the char data type.

The values of the TimeZone and Format properties contain metadata necessary for recreating
the datetime values with timezones in MATLAB in their original display format. This
metadata is necessary because the numeric values contained in the TimeStamp and
LowOrderTimeStamp arrays are calculated with respect to UTC.

You can specify TimeZone and Format properties for NaT and Inf datetime array values.

Although you must represent datetime arrays using large notation only, since TimeZone and
Format represent values of the char data type which supports small notation, you can
represent TimeZone and Format using small notation when encoding datetime arrays in
JSON.

The value for TimeZone can be empty.

The default value for Format depends on your system locale. For more information, see
“Default datetime Format” (MATLAB).

The mwtype property must have the value of datetime.

You cannot represent datetime arrays using small JSON notation.

JSON Representation of MATLAB Data Types

JSON Representation of datetime arrays

MATLAB Data Type

JSON Large Notation

datetime

"mwdata": {
"LowOrderTimeStamp": <JS
"TimeStamp": <JSON numbe

I
"mwmetadata": {

"TimeZone": <JSON string>,
"Format": <JSON string>

ON number>
r>

Fo
"mwsize"
n mwtypell

}

: [<datetime array dimension/s>],
: "datetime"

MATLAB Data: Scalar
datetime Array

JSON Large Notation with
mwdata and mwmetadata in
Small Notation

JSON Large Notation with
mwdata and mwmetadata in
Large Notation

datetime (2015, 3, 24); { {
"mwdata": { "mwdata": {
"TimeStamp": 1.4271552E+12 "TimeStamp": {
1, "mwdata": [1.4271552f+12],
"mwmetadata": { "mwsize": [1, 1],
"Format": "dd-MMM-uuuu", "mwtype": "double"
"TimeZone": "" }
H .
"mwsize": [1, 1], "mwmetadata": {
"mwtype": "datetime" "Format": {
} "mwdata": ["dd-MMM-uyuu"l,
"mwsize": [1, 11],
"mwtype": "char"

+
"TimeZone": {
"medata®: [""]

"mwsize": [0, O],
"mwtype": "char"
}
.
"mwsize": [1, 1],
"mwtype": "datetime"

}

The following table shows JSON representation for a datetime row vector. Since
LowOrderTimeStamp and TimeStamp contain double values, you need to use nested JSON
arrays when representing multidimensional (except N-by-1) arrays of LowOrderTimeStamp and

TimeStamp in small notation.

2-15

2 JSON Representation of MATLAB Data Types

MATLAB Data: datetime JSON Large Notation with |[JSON Large Notation with

Row Vector mwdata and mwmetadata in |mwdata and mwmetadata in
Small Notation Large Notation
datetime(2018,1,8,10,... { {
11,12, (1:5)+(1:5)*1e-6, ... "mwdata": { "mwdata": {
'TimeZone', 'local'); "LowOrderTimeStamp": [[9.9999999991br&B3 e TimeStamp": {
1.9999999998354667E - 6 "mwdata": [9.9999999991773336E-7,

1.99999999983546G7E-6,
2.9999999999752447E-6,

2.9999999999752447E-4
3.9999999996709334E-4

11,
"TimeStamp": [[1.515424272001E+12, 4,9999999998107114E-6],

4.9999999998107114E-f{ 3.9999999996709334E-6,
1.515424272002E+12, "mwsize": [1, 51,
1.515424272003E+12, "mwtype": "double"
1.515424272004E+12, 0
1.515424272005E+12]] "TimeStamp": {
}, "mwdata": [1.515424272001E+12,
"mwmetadata": { 1.515424272002E+12,
"Format":"dd-MMM-uuuu HH:mm:ss", 1.515424272003E+12,
"TimeZone": "America\/New York", 1.515424272004E+12,
}, 1.515424272005E+121,
"mwsize": [1, 5], "mwsize": [1, 5],
"mwtype": "datetime" "mwtype": "double"
}
},
"mwmetadata": {
"Format": {

"mwdata": ["dd-MMM-uuuu HH:mm:
"mwsize": [1, 20],
"mwtype": "char"

"TimeZone": {
"mwdata": ["America\/New York"
"mwsize": [1, 16],
"mwtype": "char"
)

.

"mwsize": [1, 51,

"mwtype": "datetime"

2-16

JSON Representation of MATLAB Data Types

MATLAB Data: datetime
Column Vector

JSON Large Notation with
mwdata and mwmetadata in

JSON Large Notation with
mwdata and mwmetadata in

Small Notation Large Notation

datetime(2018,1,8,10,... { {
11,12, (1:5)+(1:5)*1e-6, ... "mwdata": {

'TimeZone', 'local')"'; "LowOrderTimeStamp":
1.9999999998354667E-§
2.9999999999752447E-f

"mwdata": {
[9.9999999991 T t3&BEE+A,imeStamp": {
, "mwdata": [9.9999999991773336E-7,
, 1.9999999998354647E-6,
3.9999999996709334E-4, 2.9999999999752447E-6,
4.9999999998107114E-4], 3.9999999996709334E-6,
[1.515424272001E+12,

"TimeStamp": 4.9999999998107114E-61,
1.515424272002E+12, "mwsize": [1, 5],
1.515424272003E+12, "mwtype": "double"

1.515424272004E+12, D
1.515424272005E+12], "TimeStamp": {
"mwdata": [1.515424272001E+12,
1.515424272002E+1

1.515424272003E+1

}s
"mwmetadata": {
"Format":"dd-MMM-uuuu HH:

N

N

mm:ss",

"TimeZone": "America\/New York", 1.515424272004E+12,
}, 1.515424272005E+12],
"mwsize": [5, 1], "mwsize": [5, 11,
"mwtype": "datetime" "mwtype": "double"
}
},
"mwmetadata": {
"Format": {
"mwdata": ["dd-MMM-uuuu HH:mm:
"mwsize": [1, 20],
"mwtype": "char"
"TimeZone": {
"mwdata": ["America\/New York"
"mwsize": [1, 16],
"mwtype": "char"
)
.
"mwsize": [1, 51,
"mwtype": "datetime"
}

MATLAB Data: NaT and Inf
datetime Array

JSON Large Notation with
mwdata and mwmetadata in
Small Notation

JSON Large Notation with
mwdata and mwmetadata in
Large Notation

NaT { {
"mwdata": { "mwdata": {
"TimeStamp": { "TimeStamp": {
"mwdata": "NaN" "mwdata": ["NaN"],
} "mwsize": [1, 1],
}, "mwtype": "doublg"
"mwmetadata": { }
"Format": "dd-MMM-uuuu HH:mm:gs",
"TimeZone": "" "mwmetadata": {
}, "Format": {
"mwsize": [1, 1], "mwdata": ["dd-MMM-uyuu HH:mm:ss"]
"mwtype": "datetime" "mwsize": [1, 20],
} "mwtype": "char"
"TimeZone": {
"mwdata": [""],
"mwsize": [0, O],
"mwtype": "char"
s
"mwsize": [1, 1],
"mwtype": "datetime"

2-17

2 JSON Representation of MATLAB Data Types

2-18

MATLAB Data: NaT and Inf
datetime Array

JSON Large Notation with
mwdata and mwmetadata in

JSON Large Notation with
mwdata and mwmetadata in

Small Notation

Large Notation

datetime(inf,inf,inf)

{
"mwdata": {
"TimeStamp": {
"mwdata":
}
}s
"mwmetadata": {
"Format":
"TimeZone": ""
}s
"mwsize": [1, 11,
"mwtype": "datetime"

"Inf"

{
"mwdata": {
"TimeStamp": {
"mwdata": ["Inf"],
"mwsize": [1, 1],
"mwtype": "double"
}

"dd-MMM-uuuu HH:mm:ss", },

"mwmetadata": {

+

"TimeZone": {
"medata”: [""],
"mwsize": [0, O],

"Format": {
"mwdata": ["dd-MM
"mwsize": [1, 20
"mwtype": "char"

"mwtype": "char"
s
"mwsize": [1, 11,
"mwtype": "datetime"
* For more information on MATLAB datetime data type, see datetime.
Empty Array: []
* Empty arrays [] cannot be of type struct.
MATLAB Data: Empty Array [JSON Small Notation JSON Large Notation
[] [l "mwdata": [],
"mwsize": [0,0],
"mwtype": "double" | "single"
"intg" | "uint8" ||
"int32" | “uint32" ||
"logical" | "char" |
"<class name of enumerp
}
See Also
More About

. “RESTful API for MATLAB Function Execution” on page 1-2

. “Fundamental MATLAB Classes” (MATLAB)

External Websites
« JSON RFC

"intl6"

"int64"

"cell"
tion>"

M-uuuu HH:mm:

1.

https://tools.ietf.org/html/rfc8259

Troubleshooting RESTful API Errors

3 Troubleshooting RESTful API Errors

Troubleshooting RESTful API Errors

3-2

Since communication between the client and MATLAB Production Server is over HTTP, many errors
are indicated by an HTTP status code. Errors in the deployed MATLAB function use a different
format. For more information, see “Structure of MATLAB Error” on page 3-4. To review RESTful
API usage, see “RESTful API for MATLAB Function Execution” on page 1-2.

Structure of HTTP Error

{
"error": {
"type": "httperror",
"code": 404,
"messageld": "ComponentNotFound",
"message": "Component not found."
}
}

HTTP Status Codes
400-Bad Request

Message

Description

Invalid input

Client request is not formatted correctly.

Invalid JSON

Client request does not contain a valid JSON
representation.

nargout missing

Client request does not specify nargout
containing output arguments.

rhs missing

Client request does not specify rhs containing
input arguments.

Invalid rhs

Input arguments do not follow the JSON
representation for MATLAB data types. For more
information, see “JSON Representation of
MATLAB Data Types” on page 2-2.

403-Forbidden

Message

Description

The client is not authorized to access
the requested component

Client does not have the correct credentials to
make a request.

Troubleshooting RESTful API Errors

404-Not Found

Message

Description

Function not found

Server is unable to find the MATLAB function in
the deployed CTF archive

Component not found

Server is unable to find the CTF archive

URI-path not of form '/APPLICATION/
FUNCTION'

URL is not in the correct format

405-Method Not Allowed

Message

Description

Bad Method

Method is not allowed

Method must be POST

Method is not allowed

Unsupported method

Method is not allowed

411-Length Required

Message

Description

Content-length missing

Length of the content is missing

415-Unsupported Media Type

Message

Description

<VALUE> is not an accepted content
type

Content type for JSON is incorrect.

500-Internal Server Error

Message

Description

Function return type not supported

MATLAB function deployed on the server
returned a MATLAB data type that MATLAB
Production Server does not support. For
information about the data types that the
MATLAB Production Server supports, see “JSON
Representation of MATLAB Data Types” on page
2-2.

3-3

3 Troubleshooting RESTful API Errors

Resource Query vs Resource States

Resourc [NOT_FO [READIN (IN_QUE (PROCES |[READY |ERROR |CANCEL (DELETE |[UNKNO
es / UND G UE SING LED D/ WN
Server PURGED |[SERVER
States ERROR
GET 404 - |204 - |204 - |204 - [200 - [200 - |410 - |410 - |500 -
$reques|Request|NoConte|NoConte|NoConte|OK 0K Request|Request|Interna
t-uri/ |NotFoun|nt nt nt Already|Already|lServer
result |d Cancell|Deleted|Error
ed
POST 404 - |204 - |204 - |204 - |410 - (410 - |410 - |410 - |500 -
$reques|Request|NoConte|NoConte|NoConte|Request|Request |Request|Request|Interna
t-uri/ |NotFoun|nt nt nt Already|Already|Already|Already|lServer
cancel |d Complet|Complet|Cancell|Deleted|Error
ed ed ed
DELETE |404 - |409 - |409 - (409 - (204 - (204 - |204 - |410 - |500 -
$reques|Request|Request|Request|Request|NoConte|[NoConte|NoConte|Request|Interna
t-uri |NotFoun|NotComp|NotComp |NotComp|nt nt nt Already|lServer
d leted |leted |leted Deleted|Error

Structure of MATLAB Error

To resolve a MATLAB error, troubleshoot the MATLAB function deployed on the server.

{
"error": {
"type": "matlaberror",
"id": error_id,
"message": error_message,
"stack": [
{
"file": file namel,
"name": function namel,
"line": file line numberl
}I
{
"file": file name2,
"name": function name2,
"line": file line number2
I
|
}
}

Access-Control-Allow-Origin

Client programmers using JavaScript need to verify whether Cross-Origin Resource Sharing (CORS)
is enabled on a MATLAB Production Server instance, if their clients programs make requests from
different domains. If CORS is not enabled, you may get the following error message:

Response to preflight request doesn't pass access control check: No 'Access-Control-Allow-0rigin' header is present on tt

3-4

Troubleshooting RESTful API Errors

For information on how to enable CORS, see cors-allowed-origins.

See Also

More About

. “JSON Representation of MATLAB Data Types” on page 2-2
. “RESTful API for MATLAB Function Execution” on page 1-2

Examples: RESTful APl and JSON

4 Examples: RESTful APl and JSON

Create Web-Based Tool Using RESTful API, JSON, and JavaScript

4-2

This example shows how to create a web application that calculates the price of a bond from a simple
formula. It uses the MATLAB Production Server RESTful API on page 1-2 and “JSON Representation
of MATLAB Data Types” on page 2-2 to depict an end-to-end workflow of using MATLAB Production
Server. You run this example by entering the following known values into a web interface:

» Face value (or value of bond at maturity) — M

* Coupon payment — C

* Number of payments — N

* Interestrate — i

The application calculates price (P) based on the following equation:
P=C* ((1L -(1L+1i)*N) /1)+M*(1+i)~-N

Use the sliders in the web application to price different bonds.

Step 1: Write MATLAB Code

Write the following code in MATLAB to price bonds. Save the code using the filename pricecalc.m.

function price = pricecalc(face value, coupon payment,...
interest rate, num_payments)

face value;

coupon_payment;

num_payments;

interest rate;

20X

price = C* ((1 - (L + 1)”-N) /1) +M* (1 + i)"-N;

Step 2: Create a Deployable Archive with the Production Server
Compiler App

To create the deployable archive for this example:

On the Apps tab, select the Production Server Compiler App.

In the Application Type list, select Deployable Archive.

In the Exported Functions field, add pricecalc.m.

Under Archive information, change pricecalc to BondTools.
Click Package.

AL WNH

The generated deployable archive, BondTools. ctf is located in the for redistribution folder of
the project.

Step 3: Place the Deployable Archive on a Server

1 Download the MATLAB Runtime, if needed, at https://www.mathworks.com/products/compiler/
mcr. See “Supported MATLAB Runtime Versions for MATLAB Production Server” for more
information.

https://www.mathworks.com/products/compiler/matlab-runtime.html
https://www.mathworks.com/products/compiler/matlab-runtime.html

Create Web-Based Tool Using RESTful API, JSON, and JavaScript

2 Create a server using mps -new. See “Create Server Instance Using Command Line” for more
information. If you have not already setup your server environment, see mps - setup for more
information.

3 Ifyou have not already done so, specify the location of the MATLAB Runtime to the server by
editing the server configuration file main config and specifying a path for - -mcr-root. See
“Configure Server Using Configuration File” for details.

4 Start the server using mps-start, and verify it is running with mps-status.
Copy the BondTools. ctf file to the auto_deploy folder on the server for hosting.

Step 4: Enable Cross-Origin Resource Sharing (CORS) on the Server

Enable Cross-Origin Resource Sharing (CORS) by editing the server configuration file, main_config
and specifying the list of domain origins from which requests can be made to the server. For example,
setting the cors-allowed-origins optionto --cors-allowed-origins * allows requests from
any domain to access the server. See cors-allowed-origins and “Configure Server Using
Configuration File” for details.

Step 5: Write JavaScript Code using the RESTful APl and JSON

Write the following JavaScript code using the RESTful API on page 1-2 and JSON Representation of
MATLAB Data Types on page 2-2 as a guide. Save this code as a JavaScript file named
calculatePrice.js.

Code:

calculatePrice.js

//calculatePrice.js : JavaScript code to calculate the price of a bond.
function calculatePrice()

{

var cp = parseFloat(document.getElementById('coupon payment value').value);
var np = parseFloat(document.getElementById('num payments value').value);
var ir = parseFloat(document.getElementById('interest rate value').value);
var vm = parseFloat(document.getElementById('facevalue value').value);

// A new XMLHttpRequest object

var request = new XMLHttpRequest();

//Use MPS RESTful API to specify URL

var url = "http://localhost:9910/BondTools/pricecalc";

//Use MPS RESTful API to specify params using JSON
var params = { "nargout":1,
"rhs": [vm, cp, ir, npl };

document.getElementById("request").innerHTML = "URL: " + url + "
"
+ "Method: POST
" + "Data:" + JSON.stringify(params);

request.open("POST", url);

//Use MPS RESTful API to set Content-Type
request.setRequestHeader("Content-Type", "application/json");

request.onload = function()
{ //Use MPS RESTful API to check HTTP Status
if (request.status == 200)
{
// Deserialization: Converting text back into JSON object
// Response from server is deserialized
var result = JSON.parse(request.responseText);

4-3

4 Examples: RESTful APl and JSON

//Use MPS RESTful API to retrieve response in "1lhs"

if('lhs' in result)

{ document.getElementById("error").innerHTML = "" ;
document.getElementById("price of bond value").innerHTML = "Bond Price: " + result.lhs[0].mwdata;

else { document.getElementById("error").innerHTML = "Error: " + result.error.message; }

else { document.getElementById("error").innerHTML = "Error:" + request.statusText; }
document.getElementById("response").innerHTML = "Status: " + request.status + "
"
+ "Status message: " + request.statusText + "
" +
"Response text: " + request.responseText;
}
//Serialization: Converting JSON object to text prior to sending request
request.send(JSON.stringify(params));
}

//Get value from slider element of "document" using its ID and update the value field
//The "document" interface represent any web page loaded in the browser and
//serves as an entry point into the web page's content.
function printValue(sliderID, valueID) {

var x = document.getElementById(valuelD);

var y = document.getElementById(sliderID);

x.value = y.value;
}
//Execute JavaScript and calculate price of bond when slider is moved
function updatePrice(sliderID, valueID) {

printValue(sliderID, valuelD);

calculatePrice();

Step 6: Embed JavaScript within HTML Code

Embed the JavaScript from the previous step within the following HTML code by using the following
syntax:

<script src="calculatePrice.js" type="text/javascript"></script>
Save this code as an HTML file named bptool.html.
Code:

bptool.html

<!DOCTYPE html>
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head lang="en">

<meta charset="UTF-8">

<title>Bond Pricing Tool</title>

</head>

<body>
<!-- Embed the JavaScript code here by referencing calculatePrice.js -->
<script src="calculatePrice.js" type="text/javascript"></script>
<script>

//Helper Code: Execute JavaScript immediately after the page has been loaded
window.onload = function() {

printValue('coupon payment slider', 'coupon payment value');
printValue('num payments slider', 'num_payments value');
printValue('interest rate slider', 'interest rate value');

printValue('facevalue slider', 'facevalue value');
calculatePrice();
}
</script>
<hl><a>Bond Pricing Tool</h1l>
<h2></h2>
This example shows an application that calculates a bond price from a simple formula.<p>
You run this example by entering the following known values into a simple graphical interface:<p>

Face Value (or value of bond at maturity) - M
Coupon payment - C

4-4

Create Web-Based Tool Using RESTful API, JSON, and JavaScript

Number of payments - N
Interest rate - i

The application calculates price (P) based on the following equation:<p>
P=C* ((1L-(1+1)"-N) /1) +M* (1 + i)"-N<p>

<hr>

<h3>M:
<input
<input

<h3>C:
<input
<input

<h3>N:
<input
<input

<h3>i:
<input
<input

<h2>BOND

Face Value </h3>
id="facevalue value" type="number" maxlength="4" oninput="updatePrice('facevalue value', 'facevalue slider'
type="range" id="facevalue slider" value="0" min="0" max="10000" onchange="updatePrice('facevalue slider',

Coupon Payment </h3>
id="coupon payment value" type="number" maxlength="4" oninput="updatePrice('coupon payment value', 'coupon |
type="range" id="coupon payment slider" value="0" min="0" max="1000" onchange="updatePrice('coupon payment :

Number of payments </h3>
id="num_payments_value" type="number" maxlength="4" oninput="updatePrice('num_payments_value', 'num_payment:
type="range" id="num payments slider" value="0" min="0" max="1000" onchange="updatePrice('num payments slide

Interest rate </h3>
id="interest rate value" type="number" maxlength="4" step="0.01" oninput="updatePrice('interest rate value'
type="range" id="interest rate slider" value="0" min="0" max="1" step="0.01" onchange="updatePrice('interes:

PRICE</h2>

<p id="price of bond value" style="font-weight: bold">
<p id="error" style="color:red">

<hr>

<h3>Request to MPS Server</h3>
<p id="request">

<h3>Response from MPS Server</h3>
<p id="response">

<hr>
</body>
</html>

Step 7: Run Example

Confirm that the server with the deployed MATLAB function is running. Open the HTML file
bptool.html in a web browser. The default bond price is NaN because no values have been entered
as yet. Try the following values to price a bond:

» Face Value = $1000
* Coupon Payment = $100

* Number of payments = 5

* Interest rate = 0.08 (Corresponds to 8%)

The resulting bond price is $1079.85.

Use the sliders in the tool price different bonds. Varying the interest rate results in the most dramatic
change in the price of the bond.

4 Examples: RESTful APl and JSON

Bond Pricing Tool

This example shows an application that calculates a bond price from a sumple formula.
You run this example by entering the following known values into a simple graphical interface:

Face Value (or value of bond at maturity) — M
Coupon payment — C

Number of pavments — N

Interest rate — 1

The application calculates price (P) based on the following equation:

P=C*((1-(1+)"N)/i)+M*(1+D"N

M: Face Value
1000 E

C: Coupon Payment

100 B

N: Number of payments
5 g

i: Interest rate

0.08 E'
BOND PRICE

$:1079.8542007415617

Request to MPS Server

URL: http://localhost:9910/BondTools/pricecalc
Method: POST
Data:{"nargout":1."rhs":[1000.100.0.08.5]}

Response from MPS Server

Status: 200
Status message: OK
Response text: {"lhs":[{"mwdata":[1079 8542007415617]."mwsize":[1.1]."mwtype":"double" }]}

4-6

Create Web-Based Tool Using RESTful API, JSON, and JavaScript

See Also

More About
. “Troubleshooting RESTful API Errors” on page 3-2

4 Examples: RESTful APl and JSON

Create Custom Prometheus Metrics

4-8

This example shows how to create custom Prometheus metrics on a MATLAB Production Server
instance and retrieve them using the metrics service. To create custom metrics, use the
prodserver.metrics.setGauge and prodserver.metrics.incrementCounter functions in
the deployed MATLAB function. After you execute the deployed function, query the “Metrics Service”
on page 1-15 to retrieve the custom metrics.

The example assumes that there is an on-premises server running at http://localhost:9910
managed using the command line.

Write MATLAB Code to Create Custom Metrics

Write a MATLAB function that calls the proprodserver.metrics.setGauge and
prodserver.metrics.incrementCounter functions to create Prometheus metrics of type gauge
and counter, respectively. proprodserver.metrics.setGauge and
prodserver.metrics.incrementCounter do not return any output.

The following test metrics function only creates example metrics. In practice, the MATLAB
programmer, in consultation with the server administrator, creates metrics related to the deployed
application that help instrument the deployed MATLAB code.

function rc = test metrics()

tic
prodserver.metrics.incrementCounter("test function execution count",1)
toc

prodserver.metrics.setGauge("test timer seconds",toc)

rc = 0;

end

Deploy MATLAB Function to Server

Package the function test metrics.minto a deployable archive called test metrics and deploy
it to the server.

For details on creating and starting a server, see “Create Server Instance Using Command Line” and
“Start Server Instance Using Command Line”.

For details on creating a deployable archive and deploying it to the server, see “Create Deployable
Archive for MATLAB Production Server” and “Deploy Archive to MATLAB Production Server”.

Enable Metrics on Server
Enable the metrics service on the server by editing the server configuration file, main config. In

main config, uncomment the - -enable-metrics property. Restart the server for the changes to
take effect.

Execute Deployed Function

Using the language of your choice, write a client application to execute the deployed function. This
example uses a cURL command on a Windows® terminal to send requests to the server. For more

Create Custom Prometheus Metrics

information on constructing requests, see “JSON Representation of MATLAB Data Types” on page 2-
2.

The following command executes the function test metrics deployed to a server running at
http://localhost:9910. Executing the function increments the

test function_execution_ count metric by 1 and sets the test timer seconds metric to a
varying number.

curl -v -H Content-Type:application/json -d '{"nargout":0,"rhs":[]1}' http://localhost:9910/test metrics/test metrics

Query Metrics Service to Retrieve Custom Metrics

Custom metrics are registered on the server after a client calls the deployed MATLAB function. To
retrieve the metrics, use the GET Metrics API by accessing the following URL in a web browser. In
practice, a Prometheus server scrapes the metrics HTTP/HTTPS endpoint.

http://localhost:9910/api/metrics

The output of the metrics service contains information about server metrics. It also contains the
test function execution count and test timer seconds custom metrics, along with the
name of the deployable archive, test metrics, that generates the metrics.

TYPE matlabprodserver up time seconds counter
matlabprodserver up time seconds 16705.3

TYPE matlabprodserver queue time seconds gauge
matlabprodserver queue time seconds 0

TYPE matlabprodserver cpu time seconds counter
matlabprodserver cpu time seconds 29.1406

TYPE matlabprodserver memory working set bytes gauge
matlabprodserver memory working set bytes 5.17153e+08
TYPE matlabprodserver requests accepted total counter
matlabprodserver requests accepted total 7

TYPE matlabprodserver requests in queue gauge
matlabprodserver requests _in queue 0

TYPE matlabprodserver requests processing gauge
matlabprodserver requests processing 0

TYPE matlabprodserver requests succeeded total counter
matlabprodserver requests succeeded total 7

TYPE matlabprodserver requests failed total counter
matlabprodserver requests failed total 0

TYPE matlabprodserver requests canceled total counter
matlabprodserver requests canceled total ©

TYPE test function execution count counter

test function execution count{archive="test metrics 2"} 1
TYPE test timer seconds gauge

test timer seconds{archive="test metrics 2"} 0.0194095

Since the metric type of test function execution count is a counter, its value increases by 1
every time you execute the deployed function and query the metrics service. Since the metric type of
test timer seconds is a gauge, its value can increase or decrease every time you execute the
deployed function and query the metrics service.

See Also
prodserver.metrics.setGauge | prodserver.metrics.incrementCounter

4-9

4 Examples: RESTful APl and JSON

Related Examples

. “RESTful API for MATLAB Function Execution” on page 1-2
. “Metrics Service” on page 1-15

. GET Metrics

External Websites
. Prometheus Metric Types

4-10

https://prometheus.io/docs/concepts/metric_types/

RESTful APIs

5 RESTful APIs

5-2

POST Synchronous Request

Make synchronous request to server, and wait for response

Description

Use a POST method to make a synchronous request to the server. In synchronous mode, after the
server receives the request, the worker process on the server blocks all further requests until it has
completed processing the original request. The worker automatically returns a response to the client
after processing is complete. No other HTTP methods are necessary to retrieve the response from the
Server.

The server can simultaneously execute as many synchronous requests as the number of available
workers.

The following sections use JSON as the data serialization format. For an example that shows how to
use protobuf as the data serialization format with the Java client API, see “Synchronous RESTful

Requests Using Protocol Buffers in the Java Client”, and with the .NET client API, see “Synchronous
RESTful Requests Using Protocol Buffers in .NET Client”.

Request

HTTP Method

POST

URI
http://host:port/deployedArchiveName/matlabFunctionName
Query Parameters

None.

Content-Type

* application/json

Body
Name Description Value-Type
nargout Number of outputs that the client number

application is requesting from the
deployed MATLAB function. Note that
MATLAB functions, depending on their
intended purpose, can be coded to
return multiple outputs. A subset of
these potential outputs can be specified
using nargout.

POST Synchronous Request

Name Description Value-Type
rhs Input arguments to the deployed [argl,arg2,arg3,...]
MATLAB function, specified as an array
of comma-separated values.
outputFormat Specify whether the MATLAB output in |{ "mode" "small | large",
the response should be returned using |"nanInfFormat" "string |
large or small JSON notation, and object" }
whether NaN and Inf should be
represented as a JSON string or object.
If the mode is not specified or the
returned MATLAB data type does not
support JSON small notation, the
response is represented using JSON
large notation.
For more information on the JSON
representation of MATLAB data types,
see “JSON Representation of MATLAB
Data Types” on page 2-2.
Example:
Single Input Argument:
{
"nargout": 1,
“rhs": [5],
"outputFormat": { "mode" : "small", "nanInfFormat" : "object" }
}
Multiple Input Arguments:
{
"nargout": 2,
"rhs": [3, 4, 5 ...],
"outputFormat": { "mode" : "large", "nanInfFormat" : "string" }
}
Response
Success

HTTP Status Code

200 OK

5-3

5 RESTful APIs

Body
Name Description Value-Type
lhs A JSON array contained in the [outputl, output2, ...]
response from the server. Each element
of the JSON array corresponds to an
output of the deployed MATLAB
function represented using JSON
notation. For more information on
JSON notation see “JSON
Representation of MATLAB Data
Types” on page 2-2.
Example:
{
"lhs":[[[17,24,1,8,15],[23,5,7,14,16]1,[4,6,13,20,22],[16,12,19,21,3],[11,18,25,2,9]11
}
Error

HTTP Status Code
400 InvalidJSON
404 FunctionNotFound

404 ComponentNotFound

Sample Call

HTTP

Request:

POST /mymagic/mymagic HTTP/1.1

Host: localhost:9910

Content-Type: application/json

{"rhs":[5],"nargout":1, "outputFormat":{"mode":"small", "nanType":"string"}}

Response:

Status Code: 200 OK

{
"lhs":[[[17,24,1,8,15],[23,5,7,14,16],[4,6,13,20,22],[10,12,19,21,3]1,[11,18,25,2,9]11
}

POST Synchronous Request

JavaScript
var data = JSON.stringify({
"rhs": [5],
"nargout": 1,
"outputFormat": {"mode": "small", "nanType": "string"}

b
var xhr = new XMLHttpRequest();
xhr.addEventListener("readystatechange", function () {
if (this.readyState === 4) {
console.log(this.responseText);

}
1)
xhr.open("POST", "http://localhost:9910/mymagic/mymagic");
xhr.setRequestHeader("content-type", "application/json");

xhr.send(data);

Version History
Introduced in R2016a

See Also

Topics

“JSON Representation of MATLAB Data Types” on page 2-2

“Synchronous Execution” on page 1-3

“Example: Synchronous Execution of Magic Square Using RESTful API and JSON” on page 1-3
“Synchronous RESTful Requests Using Protocol Buffers in .NET Client”

“Synchronous RESTful Requests Using Protocol Buffers in the Java Client”

3-5

5 RESTful APIs

POST Asynchronous Request

Make asynchronous request to server

Description

Use a POST method to make an asynchronous request to the server. During asynchronous execution,
this step is usually the first in the process.

The following sections use JSON as the data serialization format. For an example that shows how to
use protobuf as the data serialization format with the Java client API and the .NET client API, see
“Asynchronous RESTful Requests Using Protocol Buffers in the Java Client” and “Asynchronous
RESTful Requests Using Protocol Buffers in .NET Client”.

Request

HTTP Method

POST

URI
http://host:port/deployedArchiveName/matlabFunctionName

Query Parameters

Name Description Value-Type

mode (Required). Specify mode of async
communication.

client (Optional). Specify an ID or name for |{client-id-string}
the client making the request.

Example:
?mode=async&client=Norl0l
Content-Type

* application/json

POST Asynchronous Request

Body
Name Description Value-Type
nargout Number of outputs that the client number
application is requesting from the
deployed MATLAB function. Note that
MATLAB functions, depending on their
intended purpose, can be coded to
return multiple outputs. You can use
nargout to specify a subset of these
potential outputs.
rhs Input arguments to the deployed [argl,arg2,arg3,...]
MATLAB function, specified as an array
of comma-separated values.
outputFormat Specify whether the MATLAB output in [{ "mode" "small | large",
the response should be returned using |"nanInfFormat" "string |
large or small JSON notation, and object" }
whether NaN and Inf should be
represented as a JSON string or object.
If the mode is not specified or the
returned MATLAB data type does not
support JSON small notation, the
response is represented using JSON
large notation.
For more information on the JSON
representation of MATLAB data types,
see “JSON Representation of MATLAB
Data Types” on page 2-2.
Example:
Single Input Argument:
{
"nargout": 1,
"rhs": [5],
"outputFormat": { "mode" : "small", "nanInfFormat" : "object" }
}
Multiple Input Arguments and Multiple Outputs:
{
"nargout": 2,
"rhs": [3, 4, 5 ...],
"outputFormat": { "mode" : "large", "nanInfFormat" : "string" }
}

5-7

5 RESTful APIs

Response

Success

HTTP Status Code

201 Created
Body

Name Description Value-Type
id ID of a particular request. {id-string}
self URI of particular request. {request-uri-string}
Use the URI in other asynchronous
execution requests such as retrieving the
state of the request or result of request.
up URI of a collection of requests tiedtoa |{request-collection-uri-string}
particular client.
lastModified |Number indicating when a request {server-state-number}
Seq represented by self was last modified.
state State of a request. {request-state-string}
List of states:
READING
IN QUEUE
PROCESSING
READY
ERROR
CANCELLED
client Client id or name that was specified asa |{client-id-string}
query parameter while initiating a
request.
Example:

{

"client": "

}

"id": "a061c723-4724-42a0-b405-329cb8c373d6",
"self": "/~eda954fd-5eaf-4b54-aac2-20681b33d075/requests/ab61c723-4724-42a0-b405-329cb8c373d6",
"up": "/~eda954fd-5eaf-4b54-aac2-20681b33d075/requests”,
"lastModifiedSeq": 6,

"state": "READING",

Error

HTTP Status Code

404 ResourceNotFound

405 MethodNotAllowed — No 'Access-Control-Allow-0rigin' header. Enable CORS on

Server.

415 InvalidContentType

POST Asynchronous Request

415 UnsupportedMediaType

Sample Call

HTTP

Request:

POST /mymagic/mymagic?mode=async HTTP/1.1
Host: localhost:9910
Content-Type: application/json

{"rhs":[7],"nargout":1, "outputFormat":{"mode":"small", "nanType":"string"}}
Response:

Status Code: 201 Created

Header:
Location: /~e4a954fd-5eaf-4b54-aac2-20681b33d075/requests/ad2363f3-26c1-4d48-88f8-6b7fb615f254
X-MPS-Start-Time: 003472d705bd1cd2
Content-Length: 248

Body:

{
"id": "ad2363f3-26c1-4d48-88f8-6b7fb615f254",
"self": "/~e4a954fd-5eaf-4b54-aac2-20681b33d075/requests/ad2363f3-26c1-4d48-88f8-6b7fb615f254",
"up": "/~ed4a954fd-5eaf-4b54-aac2-20681b33d075/requests",
"lastModifiedSeq": 41,
"state": "READING",
“client": ""

}

JavaScript

var data = JSON.stringify(
{ "rhs": [7],
"nargout": 1,
"outputFormat": {"mode": "small","nanType": "string"}

var xhr = new XMLHttpRequest();
xhr.open("POST", "http://localhost:9910/mymagic/mymagic?mode=async");

xhr.setRequestHeader("content-type", "application/json");
xhr.addEventListener("readystatechange", function () {
if (this.readyState === 4) {

console.log(this.responseText);
}
1)

xhr.send(data);

Version History
Introduced in R2016b

See Also
GET Representation of Asynchronous Request | POST Cancel Request | DELETE Request

5-9

5 RESTful APIs

Topics

“Asynchronous Execution” on page 1-5

“Example: Asynchronous Execution of Magic Square Using RESTful API and JSON” on page 1-7
“Create Web-Based Tool Using RESTful API, JSON, and JavaScript” on page 4-2

“Asynchronous RESTful Requests Using Protocol Buffers in .NET Client”

“Asynchronous RESTful Requests Using Protocol Buffers in the Java Client”

“JSON Representation of MATLAB Data Types” on page 2-2

5-10

GET Representation of Asynchronous Request

GET Representation of Asynchronous Request

View how asynchronous request made to server is represented

Description

Use a GET method to view the representation of an asynchronous request on the server. The URI of
the se'lf field serves as the addressable resource for the method.

The following sections use JSON as the data serialization format.

Request
HTTP Method
GET

URI

http://host:port/{request-uri-string}

Response

Success
HTTP Status Code

200 OK

Body

Name Description Value-Type

id ID of a particular request. {id-string}

self URI of particular request. {request-uri-string}
Use the URI in other asynchronous execution
requests such as retrieving the state of the
request or result of request.

up URI of a collection of requests tied to a particular |{request-collection-uri-
client. string}

lastModif |Number indicating when a request represented |{server-state-number}

iedSeq by self was last modified.

5-11

5 RESTful APIs

5-12

Name Description Value-Type

state State of a request. {request-state-string}

Possible states:

READING

IN QUEUE
PROCESSING
READY
ERROR
CANCELLED

client Client id or name that was specified as a query [{client-id-string}
parameter while initiating an asynchronous
request.

Example:

{
"id": "f90c2ff8-4d27-4795-806d-18c351abeb5b",
"self": "/~eda954fd-5eaf-4b54-aac2-20681b33d075/requests/f90c2ff8-4d27-4795-806d-18c351abeb5b"
"up": "/~ed4a954fd-5eaf-4b54-aac2-20681b33d075/requests”,
"lastModifiedSeq": 30,
"state": "READING",
"client": "786"

Error

HTTP Status Code
400 NoMatchForQueryParams

404 ResourceNotFound

Sample Call

HTTP

Request:

GET /~e4a954fd-5eaf-4b54-aac2-20681b33d075/requests/f90c2ff8-4d27-4795-806d-18c351abeb5b HTTP/1.1
Host: localhost:9910

Response:

Status Code: 200 OK
{
"id": "f90c2ff8-4d27-4795-806d-18c351abeb5b",
"self": "/~ed4a954fd-5eaf-4b54-aac2-20681b33d075/requests/f90c2ff8-4d27-4795-806d-18c351abeb5b",
"up": "/~ed4a954fd-5eaf-4b54-aac2-20681b33d075/requests",
"lastModifiedSeq": 31,
"state": "IN QUEUE",
"client": "786"

GET Representation of Asynchronous Request

JavaScript

var data = null;

console.
}
1)
xhr.open("GET",
xhr.send(data);

var xhr = new XMLHttpRequest();
xhr.addEventListener("readystatechange", function () {
if (this.readyState === 4) {

log(this.responseText);

"http://localhost:9910/~e4a954fd-5eaf-4b54-aac2-20681b33d075/requests/f90c2ff8-4d27-4795-80

Version History
Introduced in R2016b

See Also

GET State Information | GET Result of Request

Topics

“Asynchronous Execution” on page 1-5
“Asynchronous RESTful Requests Using Protocol Buffers in the Java Client”

5-13

d-18c351abeb

5 RESTful APIs

5-14

GET Collection of Requests

View a collection of requests

Description

Use a GET method to view a collection of requests on the server. The URI of the up field serves as the

addressable resource for the method.

The following sections use JSON as the data serialization format. For an example that shows how to

use protobuf as the data serialization format with the Java client API, see “View the Collection of

Requests Owned by a Particular Client”.

Request

HTTP Method

GET

URI
http://host:port/{request-collection-uri-string}

Query Parameters

Name Description Value-Type
since Required. {server-state-number}
clients Required if ids is not specified. |{client-id-string 1},
{client-id-string 2}, ...
ids Required if clients is not {id-string 1},
specified. {id string 2}, ...
Example:

?since=30&clients=786

* The query parameter since={server-state-number} is required if you are making an

asynchronous request.

* The query parameter clients={client-id-string} is optional.

Response

Success

HTTP Status Code

200 OK

GET Collection of Requests

Body
Name Description Value-Type
createdSeq Number indicating the server state. The |{server-state-number}
requests included in the data collection
are the requests that have gone through
some state change between since and
createdSeq.
data Collection of MATLAB execution requests | "data": [
that match a query. { _ .
"id": {id-string},
"self": [request-uri-string},
"up": {request-collection-uri-st
"lastModifiedSeq": {server-state
"state": {request-state-string},
"client": {client-id-string}
+
{
"id": {id-string},
"self": {request-uri-string},
"up": {request-collection-uri-st
"lastModifiedSeq": {server-state
"state": {request-state-string},
"client": {client-id-string}
Yo
1
Example:
"data":
{
"c5666088-b087-4bae-aa7d-d8470e6e082d",
"self": "/~ed4a954fd-5eaf-4b54-aac2-20681b33d075/requests/c5666088-b087-4bae-aa7d-d8470e6e082d",
"/~ed4a954fd-5eaf-4b54-aac2-20681b33d075/requests",
"lastModifiedSeq": 19,
"state": "READY",
"client": "786"
iy
{
"a4d0f902-d212-47d5-a855-6d64192842d8"
"self": "/~e4a954fd-5eaf-4b54-aac2-20681b33d075/ requests/a4d0f902-d212-47d5-a855-6d64192842d8",
"/~ed4a954fd-5eaf-4b54-aac2-20681b33d075/requests",
"lastModifiedSeq": 17,
"state": "READY",
"client": "786"
i
1
Error

If you call a GET collection request for a nonexistent client, you receive a 404 error in response.

If you call a GET collection request for a client that currently has no requests (for example, all
previous requests from the client were deleted), then the GET call either:

* Times out if the client has a timeout limit specified

* Waits indefinitely until the client sends a new request. The GET call then returns that request.

5-15

ring},
-number},

ring},
-number},

5 RESTful APIs

5-16

HTTP Status Code

400 InvalidParamSince
400 MissingParamSince

400 MissingQueryParams
400 NoMatchForQueryParams
404 URL not found

500 InternalServerError

Sample Call

HTTP

Request:

GET /~ed4a954fd-5eaf-4b54-aac2-20681b33d075/requests?since=15&clients=786 HTTP/1.1
Host: localhost:9910

Response:

Status Code: 200 OK
{

"createdSeq": 19,
"data": [
{

"id": "c5666088-b087-4bae-aa7d-d8470e6e082d",
"self": "/~eda954fd-5eaf-4b54-aac2-20681b33d075/requests/c5666088-b087-4bae-aa7d-d8470e6e082d",
"up": "/~ed4a954fd-5eaf-4b54-aac2-20681b33d075/requests”,
"lastModifiedSeq": 19,
"state": "READY",
"client": "786"

I

{
"id": "a4def902-d212-47d5-a855-6d64192842d8",
"self": "/~eda954fd-5eaf-4b54-aac2-20681b33d075/requests/a4d0f902-d212-47d5-a855-6d64192842d8",
"up": "/~ed4a954fd-5eaf-4b54-aac2-20681b33d075/requests”,
"lastModifiedSeq": 17,
"state": "READY",
"client": "786"

}

1

}
JavaScript

var data = null;
var xhr = new XMLHttpRequest();
xhr.addEventListener("readystatechange", function () {
if (this.readyState === 4) {
console.log(this.responseText);
}

1)
xhr.open("GET", "http:////localhost:9910/~e4a954fd-5eaf-4b54-aac2-20681b33d075/requests?since=15&clients=78
xhr.send(data);

GET Collection of Requests

Version History
Introduced in R2016b

See Also
GET State Information | GET Representation of Asynchronous Request

Topics
“Asynchronous RESTful Requests Using Protocol Buffers in the Java Client”

5-17

5 RESTful APIs

GET State Information

Get state information of request

Description

Use a GET method to get information about the state of a request. The URI of the self field serves as
the addressable resource for the method. Possible states are: READING, IN QUEUE, PROCESSING,
READY, ERROR, and CANCELLED.

The following sections use JSON as the data serialization format. For an example that shows how to

use protobuf as the data serialization format with the Java client API, see “Get the State Information
of the Request”.

Request
HTTP Method
GET

URI

http://host:port/{request-uri-string}/info

Response

Success

HTTP Status Code

200 0K

Body

Name Description Value-Type

request URI to current request. {request-uri-string}

lastModified |[Number indicating when the current {server-state-number}

Seq request was last modified.

state State of current request. {request-state-string}
Possible states:
READING
IN QUEUE
PROCESSING
READY
ERROR
CANCELLED

Example:

5-18

GET State Information

{
"request": "/~ed4a954fd-5eaf-4b54-aac2-20681b33d075/requests/c5666088-b087-4bae-aa7d-d8470e6e082d",
"lastModifiedSeq": 19,
"state": "READY"

}

Error

HTTP Status Code

400 NoMatchForQueryParams— Query with invalid request ID.

404 URL not found

Sample Call

HTTP

Request:

GET /~e4a954fd-5eaf-4b54-aac2-20681b33d075/requests/c5666088-b087-4bae-aa7d-d8470e6e082d/info HTTP/1.1
Host: localhost

Port: 9910

Response:

Status Code: 200 OK

{
"request": "/~e4a954fd-5eaf-4b54-aac2-20681b33d075/requests/c5666088-b087-4bae-aa7d-d8470e6e082d",
"lastModifiedSeq": 19,
"state": "READY"

}

JavaScript

var data = null;
var xhr = new XMLHttpRequest();
xhr.addEventListener("readystatechange", function () {
if (this.readyState === 4) {
console.log(this.responseText);
}

1)

xhr.open("GET", "http://localhost:9910/~e4a954fd-5eaf-4b54-aac2-20681b33d075/requests/c5666088-b087-4bae-aa
xhr.send(data);

fd-d8470e6e08

Version History
Introduced in R2016b

See Also
GET Representation of Asynchronous Request | GET Result of Request
Topics

“Asynchronous Execution” on page 1-5
“Asynchronous RESTful Requests Using Protocol Buffers in the Java Client”

5-19

5 RESTful APIs

GET Result of Request

Retrieve results of request

Description

Use a GET method to retrieve the results of a request from the server. The URI of the self field
serves as the addressable resource for the method.

The following sections use JSON as the data serialization format. For an example that shows how to
use protobuf as the data serialization format with the Java client API, see “Retrieve the Results of a
Request”.

Request
HTTP Method
GET

URI

http://host:port/{request-uri-string}/result

Response

Success

HTTP Status Code

200 OK
Body

Results represented in JSON.

Example:

{"ths":[[[17,24,1,8,15],[23,5,7,14,161,[4,6,13,20,22],[10,12,19,21,3],[11,18,25,2,911]]}

Error

HTTP Status Code

404 RequestNotFound

410 RequestAlreadyCompleted
410 RequestAlreadyCancelled
410 RequestAlreadyDeleted

500 InternalServerError

5-20

GET Result of Request

Sample Call

HTTP

Request:

GET /~f76280c5-b94c-4cd9-8eb6-841532788583/requests/ad063314-ebda-4310-b356-59420058c17c/result HTTP/1.1
Host: localhost:9910

Response:

Status Code: 200 OK
{"lhs":[[[17,24,1,8,15],[23,5,7,14,16]1,[4,6,13,20,221,[10,12,19,21,31,[11,18,25,2,9]11

JavaScript

var data = null;
var xhr = new XMLHttpRequest();
xhr.addEventListener("readystatechange", function () {
if (this.readyState === 4) {
console.log(this.responseText);
}
1)

xhr.open("GET", "http://localhost:9910/~f76280c5-b94c-4cd9-8eb6-841532788583/requests/ad063314-ebda-4310-b3
xhr.send(data);

Version History
Introduced in R2016b

See Also

GET State Information | DELETE Request

Topics
“Asynchronous Execution” on page 1-5
“Asynchronous RESTful Requests Using Protocol Buffers in the Java Client”

5-21

6-59420058c1

5 RESTful APIs

POST Cancel Request

Cancel request

Description

Use a POST method to cancel a request. You can cancel only those requests that have not already
completed.

Request
HTTP Method
POST

URI

http://host:port/{request-uri-string}/cancel

Response

Success
HTTP Status Code

204 No Content

Error

HTTP Status Code

404 RequestNotFound

410 RequestAlreadyCompleted
410 RequestAlreadyCancelled
410 RequestAlreadyDeleted

500 InternalServerError

5-22

POST Cancel Request

Sample Call
HTTP

Request:

POST /~f76280c5-b94c-4cd9-8eb6-841532788583/requests/ef90fcad-0d3c-4395-8dc8-af8a8905b1fe/cancel HTTP/1.1
Host: localhost:9910

Response:

Status Code: 204 No Content

JavaScript

var data = null;
var xhr = new XMLHttpRequest();
xhr.addEventListener("readystatechange", function () {
if (this.readyState === 4) {
console.log(this.responseText);
}
1)

xhr.open("POST", "http://localhost:9910/~f76280c5-b94c-4cd9-8eb6-841532788583/requests/ef90fcad-0d3c-4395-8
xhr.send(data);

ic8-af8a8905b

Version History
Introduced in R2016b

See Also
DELETE Request | POST Asynchronous Request

Topics
“Asynchronous Execution” on page 1-5

5-23

5 RESTful APIs

DELETE Request

Delete request from server

Description

Use a DELETE method to delete a request on the server. You cannot retrieve the information of a
deleted request.

Request
HTTP Method
DELETE

URI

http://host:port/{request-uri-string}

Response

Success

HTTP Status Code
204 No Content

Error

HTTP Status Code

404 RequestNotFound

409 RequestNotCompleted— Request has not reached terminal state.
410 RequestAlreadyDeleted

500 InternalServerError

Sample Call

HTTP

Request:

DELETE /~f76280c5-b94c-4cd9-8eb6-841532788583/requests/31577b58-209¢c-4c41-b3f8-6e1e025f9c9b HTTP/1.1
Host: localhost:9910

Response:

Status Code: 204 No Content

5-24

DELETE Request

JavaScript

var data = null;
var xhr = new XMLHttpRequest();
xhr.addEventListener("readystatechange", function () {
if (this.readyState === 4) {
console.log(this.responseText);
}
1)

xhr.open("DELETE", "http://localhost:9910/~f76280c5-b94c-4cd9-8eb6-841532788583/requests/31577b58-209c-4c41tb3f8-6ele025
xhr.send(data);

Version History
Introduced in R2016b

See Also
POST Cancel Request | POST Asynchronous Request

Topics
“Asynchronous Execution” on page 1-5

5-25

5 RESTful APIs

5-26

GET Discovery Information

Discover MATLAB functions deployed on the server

Description

Use the GET method to view information about the MATLAB functions that you deploy to the server.
You receive information about

* all deployed archives with discovery information.

* names of the MATLAB functions that each archive contains.

* names and MATLAB data types of the inputs and outputs for each of the MATLAB functions.
* additional metadata.

If you build a deployable archive (CTF file) without including discovery information, it is not
discoverable.

In order to use the discovery service, you must enable the discovery service on the server. Do this by
uncommenting the option - -enable-discovery in the main config server configuration file.

Request
HTTP Method
GET

URI

http://host:port/api/discovery

Response

Success

HTTP Status Code

200 OK

Body
For a description of the body, see “JSON Response Object” on page 1-11.
Error

403 DiscoveryDisabled

GET Discovery Information

Sample Call

HTTP

Request:

GET /api/discovery HTTP/1.1
Host: localhost:9910

Response:

{
"discoverySchemaVersion": "1.0.0",
"archives": {
"mymagic": {

"archiveSchemaVersion": "1.1.0",

"archiveUuid": "mymagic 73BCCE8B5FFFB984888169285CBA8A31",
"name": "mymagic"

"matlabRuntimeVersion": "9.5.0"

"functions": {
"mymagic": {
"signatures": [

{
"help": "Generate a magic square",
"inputs": [
{
"name": "in",
"mwtype": "double",
"mwsize": [1,
"help": "Dimension of magic square matrix"
}
] ’
"outputs": [
{
"name": "out",
"mwtype": "double",
"mwsize": [1,
"help": "Magic square matrix"
}
]
}

5-27

5 RESTful APIs

5-28

JavaScript

var data = null;
var xhr = new XMLHttpRequest();
xhr.addEventListener("readystatechange", function () {
if (this.readyState === 4) {
console.log(this.responseText);
}
b

xhr.open("GET", "http://localhost:9910/api/discovery");
xhr.send(data);

Version History
Introduced in R2018a

See Also

Topics
“Discovery Service” on page 1-10
“MATLAB Function Signatures in JSON” on page 1-18

GET Server Health

GET Server Health

Get information about the overall health of the server

Description

Use the GET method to determine whether the server is healthy and able to process HTTP requests.

The server is healthy if it has a valid license or has lost communication with the network license
manager but is still within the grace period specified by the license-grace-period property.

Request
HTTP Method
GET

URI

http://host:port/api/health

Response
Success
HTTP Status Code

200 OK
Body

Name Description

Value-Type

status Status of server.

ok

Example:

{
}

"status": "ok"

Error

HTTP Status Code

503 Health check failed

5-29

5 RESTful APIs

Sample Call

HTTP

Request:

GET /api/health HTTP/1.1
Host: localhost:9910

Response:

HTTP/1.1 200 OK
Content-Type: application/json

{

"status": "ok"
}
JavaScript

var data = null;

var xhr = new XMLHttpRequest();

xhr.addEventListener("readystatechange", function () {

if (this.readyState === 4) {
console.log(this.responseText);

}

1)

xhr.open("GET", "http://localhost:9910/api/health");
xhr.send(data);

Version History
Introduced in R2019b

See Also

Topics
“Health Check” on page 1-14

5-30

GET Metrics

GET Metrics

Retrieve server metrics

Description

Use the GET method to retrieve metrics for a server instance in the Prometheus metrics format. The
metrics service returns information about requests that client applications send to the server, and the
time and memory that the server takes to execute the requests. You can use the metrics service to
monitor server metrics in a Kubernetes environment. All server metrics reset on a server restart.

In addition to the server metrics, the metrics service also returns custom metrics that you can create
in the MATLAB function that you deploy to the server. For a detailed example, see “Create Custom
Prometheus Metrics” on page 4-8. Custom metrics reset depending on the value of the worker-
restart-interval property.

To use the metrics service, you must enable the metrics service on the server. Do this by
uncommenting the option - -enable-metrics in the main config server configuration file.

Request
HTTP Method
GET

URI

http(s)://host:port/api/metrics

Response

Success

HTTP Status Code

200 OK

Body

Name Description

matlabprodserver up time seconds Time in fractional seconds since server startup.

matlabprodserver queue time seconds Sum of wait times in fractional seconds for
currently queued synchronous and asynchronous
requests.

matlabprodserver cpu_ time seconds Total CPU time in fractional seconds that the
server spent in request execution after startup.

matlabprodserver memory working set by|Sum of memory utilization in bytes by all

tes MATLAB Production Server processes at a given
time.

5-31

5 RESTful APIs

5-32

Name

Description

matlabprodserver requests accepted tot
al

Total number of valid requests that the server
received after startup.

Total requests accepted at a given time is the sum
of requests that are canceled, in queue,
processing, and requests that have failed and
successfully completed after server startup.

matlabprodserver requests in queue

Number of requests currently waiting to be
processed by the server.

matlabprodserver requests processing

Number of requests that the server is currently
processing.

matlabprodserver requests succeeded to
tal

Total number of requests that completed
successfully.

matlabprodserver requests failed total

Total number of requests that failed. Requests
can fail if they contain an incorrect name of the
deployed MATLAB function.

matlabprodserver requests canceled tot
al

Total number of asynchronous requests that
clients canceled.

Error

403 Metrics Disabled

GET Metrics

Sample Call

HTTP

Request:

GET /api/metrics HTTP/1.1
Host: localhost:9910

Response:

TYPE matlabprodserver up time seconds counter
matlabprodserver up time seconds 68140.5

TYPE matlabprodserver queue time seconds gauge
matlabprodserver queue time seconds 0

TYPE matlabprodserver cpu time seconds counter
matlabprodserver cpu time seconds 18.2188

TYPE matlabprodserver memory working set bytes gauge
matlabprodserver memory working set bytes 1.57426e+08
TYPE matlabprodserver requests accepted total counter
matlabprodserver requests accepted total 0

TYPE matlabprodserver requests in queue gauge
matlabprodserver requests in queue 0

TYPE matlabprodserver requests processing gauge
matlabprodserver requests processing 0

TYPE matlabprodserver requests succeeded total counter
matlabprodserver requests succeeded total 0

TYPE matlabprodserver requests failed total counter
matlabprodserver requests failed total 0

TYPE matlabprodserver requests canceled total counter
matlabprodserver requests canceled total 0

JavaScript

var data = null;
var xhr = new XMLHttpRequest();
xhr.addEventListener("readystatechange", function () {
if (this.readyState === 4) {
console.log(this.responseText);
}
1)

xhr.open("GET", "http://localhost:9910/api/metrics");
xhr.send(data);

Version History
Introduced in R2021a

See Also
mps-status | prodserver.metrics.setGauge | prodserver.metrics

Topics
“Metrics Service” on page 1-15

.incrementCounter

5-33

5 RESTful APIs

External Websites
Prometheus Metric Types

5-34

https://prometheus.io/docs/concepts/metric_types/

	Client Programming
	RESTful API for MATLAB Function Execution
	Characteristics of RESTful API
	Synchronous Execution
	Example: Synchronous Execution of Magic Square Using RESTful API and JSON
	Asynchronous Execution
	Example: Asynchronous Execution of Magic Square Using RESTful API and JSON
	Manage HTTP Cookie

	RESTful API for Discovery and Diagnostics
	Characteristics of RESTful API
	Discovery Service
	Health Check
	Metrics Service

	MATLAB Function Signatures in JSON
	Function Objects
	Signature Objects
	Argument Objects
	Typedef Object

	JSON Representation of MATLAB Data Types
	JSON Representation of MATLAB Data Types
	Numeric Types: double, single and Integers
	Numeric Types: NaN, Inf, and -Inf
	Numeric Types: Complex Numbers
	Character Array
	Logical
	Cell Array
	Structure Array
	String Array
	Enumeration
	Datetime Array
	Empty Array: []

	Troubleshooting RESTful API Errors
	Troubleshooting RESTful API Errors
	Structure of HTTP Error
	HTTP Status Codes
	Structure of MATLAB Error
	Access-Control-Allow-Origin

	Examples: RESTful API and JSON
	Create Web-Based Tool Using RESTful API, JSON, and JavaScript
	Step 1: Write MATLAB Code
	Step 2: Create a Deployable Archive with the Production Server Compiler App
	Step 3: Place the Deployable Archive on a Server
	Step 4: Enable Cross-Origin Resource Sharing (CORS) on the Server
	Step 5: Write JavaScript Code using the RESTful API and JSON
	Step 6: Embed JavaScript within HTML Code
	Step 7: Run Example

	Create Custom Prometheus Metrics
	Write MATLAB Code to Create Custom Metrics
	Deploy MATLAB Function to Server
	Enable Metrics on Server
	Execute Deployed Function
	Query Metrics Service to Retrieve Custom Metrics

	RESTful APIs
	POST Synchronous Request
	POST Asynchronous Request
	GET Representation of Asynchronous Request
	GET Collection of Requests
	GET State Information
	GET Result of Request
	POST Cancel Request
	DELETE Request
	GET Discovery Information
	GET Server Health
	GET Metrics

